

Palm OS Overview

Terminology

Hotsync
The act of synchronizing the data stored on the Palm with a backup stored on a PC. This can be
done through the cradle or over a modem or infrared connection.

Cradle
Where the palm is docked for a hotsync.

Beaming
The act of transferring an object (binary file, database, database record, etc.) from one device to
another over the IR port.

Handspring Visor
A less expensive Palm clone.

Development

There are a suite of tools for Linux, including a GCC cross compiler.

Codewarrior released an IDE and emulator for Windows.

There is a Palm emulator called "POSE" that runs under Linux and Windows.

Processor

All Palm OS machines run a clone of the 68000 processor running at 16MHz, called Dragonball
(MC68328) on the Palms. There is also a more modern Dragonball EZ processor (MC68EZ328) in use

in many models.

Display

Screen resolution is 160x160.

In PalmOS 3.x and above, 4 shades of gray are supported, though most apps operate in monochrome
mode.

(Some hacks hit 16 shades of gray using lots of inline assembly.)

The Palm Illc is the only device in the family that shows color, and it is 8-bit indexed, 8-bits per
channel.

Operating System

Starting with the Palm III, the OS version is 3.0. This is the first version that supports grayscale and a
variety of other features. It is also the lowest version we will support and the version we are building for.

In almost all cases, OS versions are backwards binary compatible. The API might change slightly from
version to version.

Other PalmOS devices run various versions including 3.0, 3.0.2, 3.1, 3.2, 3.3, and 3.5.

Version 3.5 is required for color applications.

Memory Management

Most devices come with 2MB, 4MB or 8MB of RAM/storage.

Each application running has access to the dynamic heap, which is quite small. Older devices have a
96K heap, while the newer ones have 128K.

The memory manager handles "chunks" of data which it is free to move around.

Chunks can be locked down for use by a program.

Databases

Databases are a special form of memory chunks that are tagged with identifying information that can
associate them with an application.

Databases can be thought of as memory mapped "files" which exist in RAM.

Sample usage: MemoPad.

Records can be added to and deleted from a database, and databases can be stored sorted.

Databases also have an area for application-specific information.

For ease, a file streaming interface has been implemented. Many apps continue to use the Database
interface since it works well with their functionality.

Databases generally have the ".PDB" extension, but that varies according to specialized database types.

Databases can be prebuilt and

Applications

Palm OS supports multiple tasks (processes) in theory, but not in practice.

The Launcher starts a new process for an Application, but the Application generally doesn’t continue to
run in the background when another Application is launched.

Each Application generally contains a "Form" which is a Window containing widget. (The application is
free to create as many Windows as it wants, and they need not be Forms.)

The Application runs as an event-driven window system. Events are passed from the OS through a series
of event handlers, some of which are within the application. The app can choose to handle certain
events.

The executable is a ".PRC" file, which is itself a Database. It includes the binary code for the system as
well as the resources used.

Resource files

Resource files are specialized Databases that hold information about the UI widgets used in Forms and
Windows, as well as other misc information about the Application (e.g. version number).

The resource file is defined as a text file (Unix) or using a GUI design tool (Codewarrior) and is

compiled using a "resource compiler” into a format that can be included in the executable binary.

Widgets can be added and removed programatically at runtime, but it’s generally a PITA compared to
using the resource compiler.

Communication

Serial communication is supported through the cradle, and over the IR port using a protocol called
IRCOMM.

The Palm VII supports wireless internet connections.

Other devices support serial modem connections.

Some cradles use a USB connection for faster syncs, but the throughput is limited by the speed of the
processor to somewhere under 4MB.

The IR port uses a common standard protocol called IrDA. It’s a layered protocol where the upper layers
correspond to high level protocols such as IRCOMM and IrOBEX.

IrOBEX is the protocol used when "beaming" data from one device to another.

The next layers down in the IR protocol stack can be accessed for complete control of the data
transmitted (e.g. for a game.) (A homebuilt library for simplifying this complex process into a few
function calls is being written.)

Drawing Primitives

In Palm OSs before 3.5, there are black and white drawing primitives (line, rectangle, point, etc.) and

hashed fill patterns.

Palm OS 3.5 introduces grayscale and color drawing primitives. (Which we can’t use unless we also
code support for older 3.0 models.)

Applications can create an offscreen window for drawing and double-buffering.

Bitmaps

Bitmaps can be monochrome, grayscale, or color.

Bitmaps can be dynamically constructed at runtime using our homebuilt bitmap library.

Support for modification of bitmaps in versions before 3.5 is virtually nonexistant (except with our
bitmap lib.)

Palm OS 3.5 introduces a method for using drawing primitives directly on a bitmap. (Which we can’t
use.)

Misc Hardware

Some Palms, such as the IIlc and V, have built in rechargable batteries which power up while the device
is docked in the cradle.

Linux (recent development kernels) supports IrDA, and we possess a cool IR dongle to experiment with
transmitting from a PC to a palm.

The Visor has a plug-in slot for "Springboard Modules" ("Springboard" being the name of the tech used
for the slot.) Examples of these cards are video games, memory expansion, cameras, MP3 players, GPSs
(not yet available), etc.

Resources

Hello.rcp:

#include "HelloRsc.h"

/*

** Version number for application

*J
VERSION ID 1000 "1.0"

/*

** Description of main form

*/
FORM ID HelloForm AT (0 0 160 160)
BEGIN

TITLE "Hello"

BUTTON "Blort" ID BlortButton AT (5 BOTTOM@156 AUTO AUTO)

END

/*

** An alert message box

*/
ALERT ID BlortAlert

INFORMATION

BEGIN

TITLE "Blort Status"

MESSAGE "Blorting in progress."

BUTTONS "OK"

END

{179 uInjax

{

! ()uoTaeoTTddydols
¢ () dooT3uSnm

} (0 == (()uot3esT(ddyaze3s = I13)) 3IT
} (younerTeuzoNpwoySuneTddysAs == pud) 3FT

0 = 132 11¥

}
(sbeTJyoune pIoM 'dEdpud I3d ‘PWO PIOM) UTEHIOTTd PIOMA

/x
(JUTBHIOTTd »+

«/

¢ (Jusagdodsdde =i =dALe‘jusas) STTUM {
{

! (3uanax®) JuaagydIeds TqUITY

} ((3uene3)jusageTpueHUOTIERDTTAAY () IT
} ((z0xx9% ‘JUSAS® TIAN) IUSAFSTPUPHNUSH{) 3IT

} ((3ueAs®) JusATSTPUBHSAS() IT

! (12A21041TEMIAS ' JUSASR) JUSATISDIAT
} op

{10119 pPaoM
‘qusne adALjusnm

)
(pToA)doOTIUSAT PTOA DTIRIS

/x
()dooTausAd X«

*/

‘paTpuRy UINISI

tenz3 = parpuey
{

yeaaq
! (3USAESTPUBHWIOS ‘W1J)ISTPURHIUSATISSWII

WI0J STYI I0J ISTPURY IJUSAD Y3 135 //
TWIOJOTTSH 3Sed

} (PIWIOF) yI3TMS

27BATIOR // ! (WXF)WIOJSATIDOYISSWIL
3TUT // ¢ (PIWIOF)WIOIITUIWII = WIF

{QTUIOF ' PROTWI] * PIBP<-IUSAS = DIWIOF
} (3usagpeomuiy == 2dALe<-3jusa3) IT

pekeldsTp pue pspeol 3SITI ST Wioj 2y3 usym suaddey Jusas STUI //

!asTej = papuey ueaoogd
{pIuzo3 Jur

fwxgy 13qurod
}

(IuaA® I1343USAH) JUSAFS[PURHUOTIROTTddY ueaTo0od OT1els

/x

() 3uUsAZ2TPUBRHUOTIROTTAAY x4

*/

O'OII°H

tpatpuey uIniax

FTPUSH

FNOOTIdE AOVETIYD
TTONND T FSPITH

‘yeaaq

{
yea1q

‘onx3 = paypuey
xoq 318Te 2y3 dn dod // !(3I2TY3ITOTE)IISTWULI

:uo3INglIoTd 95ed
} (QITOX3u0D"309TaSTID " BIBP<-1USAD) YOI TMS

:JusAE1D9T9STI0 95D
pessaxd useq sey uolang e //

Iyea1q

feniy = petpuey
£(0Z 'S ‘€T ‘wiDTIOM ‘OTTSH.) SIRUDMRIQUTM

wxoy ay3 Aerdstp // ! (()UIOISATIDOYISOULLL)WIOIMCIqWII
:juengusdowij 9sed

1T MeIp pue 3jnas ITUT os ‘Butuedo 1SN ST wro3 BYI //

} (2dAze<-3uens) UOITMS

$3T ST JueA® JO puTy JEUM //

JTpUSH

ENDHOTOUd MOVETTIYD

TTONNDT FSPITH#

fa@sTe3y = palpuey uearood

paarnbax ST juaA® STY3 U0 butssadoxd a10w ou JT Sni3 33S ST pafpuey //

3
(JusA® I13dIUSAH) JUSAFS[PUPHWIOI UeaT00g OT3R3S

/%
() IUSAS TPURHWIOS xx

®/

213y S906 spoo dnues(o Aue //
}

(ptoa) uotyeor1ddydols pTOA OT3e3s

/x
()uoT3eoT1ddydols «x

*/

{0 uan3ax

 (WIOJO T TSH) WO JOJODULTT

3T 03 dum(pue wioj utew S3IT PeOT ‘s3Tels uoriedtidde syl usym //
}

(ptoa) uotyedrTddyiaels Iag OT3els

/%
()uoT3eoT1ddylIels ««

*/

JTpUSH#
WU SYORqITRD. SPNTOUTH

TTOONDT FEPITH
U OSOTTSH. SPNTOUTH

<Y'30TTd> SpNTouUTH

/x

S°OTT®H xx
!

e
~agosny

RN IC:|

/+13TP2 30U oa

6666 WIOJOTTSH SUTISP#
8666 UOIINGIIOTH SUTISP#
L666 3ISTYITOTE SUTISDH

“9TT3 pa3jexsusb oxTTd «/

Usyorqqre)

FTpUSH#

‘peTenes = peTHOI FNOOTIJE NOVETIVO SUTISP#
: i ,pegs’BIEDPRE T°QNS (pRse’GeRE [OA0W,)WSe !pe HoI = pETOARS, PTOA

\ END0T0¥d MOVETIVD SUTISP#

{(.pes.)WSe pehai, PTOA I93STHEX

/+ UBL -
- ATTest3ewo3ne snobortde pue snorboxd

STY3l 3I3SUT TTTM UYDTUYM ,3OBQITEd, 93INQTIIIL UOTIOUNF © juem ATTesr oM
-K1e1qT] PaIRYS

JueIaIITP ® UT Huryjswos Aq ¥OeQITED B SB PasSn ST 3T 3JT 2nIj oq 3ou
osTe Aew 2T - (()SWIOJTTVYSSOTOWId 93TT) 206 Aq paTTduwod 3,usem 3eys
Buryjswos &g HOeqI{ed © S PST[ed ST UOTIOUNF © FT SnI3 3,UST STUL

"0°0310 ut dn 39S ST 3T I93J° peg UYONol [ITM U0 Ou 3IeYyj saumsse Od6

1506 JO UOTSISA JUSIIND SY3 UT BN B I0J DUNOILHIOM © ST STUL x/

TTH MOVETIVO SUTISPH
TTH MOVETIVOT ISPUITH

Getting Started »

Business and Marketing »

Solution Provider
Program

Platinum Program

News and Events

Provider Pavilion

About Palm, Inc.

Site Map

Contacts

Quick Index

Business Info

Conduits

Contact Palm

Creator ID

Dev Seeding

Become a

»

eveloper!
LCLICK FOR DETANLS

» New Developers + Technologies » Tools

» Knowledge Base » Documentation » Support

Hardware Comparison Matrix

These are the currently released Palm OS® platform devices, including those from
Palm Inc. licensees and OEMs. This list of the major differences between products is
designed help developers understand product differences and product histories. This page
is not intended to be a complete list of differences between products; minor differences in
hardware and/or ROM revisions may also exist.

Palm Inc. Products

Pilot 1000

Pilot 5000

Pilot w/1MB upgrade

PalmPilot[tm] Personal

PalmPilot[tm] Pro

PalmPilot[tm] Pro Upgrade

Palm III[tm] organizer

Palm(tm] 2MB upgrade

Palm Illc[tm] organizer

Palm IlIx[tm] organizer

Palm IIle[tm] organizer Special Edition

Palm Ille[tm] organizer

Palm Ille[tm] organizer & Special Edition

Palm IIIxe[tm] organizer

Palm V[tm] organizer

Palm VII[tm] organizer

Palm Vx[tm] organizer

Licensee and OEM Devices

PageMart Synapse PagerCard

Symbol SPT1500

Symbol SPT1700

Symbol SPT1740

To
ta

l
RA

M

128K

512K

1MB

512K

IMB

IMB

2MB

2MB

8MB

4MB

2MB

2MB

2MB

8MB

2MB

2MB

8MB

2MB

2MB

2or

8SMB

2or

8MB

D
y
n
a
m
i
c

H
e
a
p

w] ~

32K

32K

32K

64K

64K

96K

96K

128K

128K

128K

128K

128K

128K

128K

128K

128K

96K

96K

96K

96K

Pa
lm

08
"

Ve
rs

io
n

1.0

3.3/3.5

3.0@

302

32

32

EZ

T
P

Su
pp
ar
t

IR

Su
pp
or
t

Fl
as
ha
bl
e

R
O
M

»
B

No backlight.

No backlight.

No backlight.

Upgrade for Pilot 1000, Pilot
5000, and PalmPilot Personal

Upgrade for Pilot 1000, Pilot

5000, and PalmPilot Personal.
Adds flash and IR.

Rechargable lithium ion
batteries. Color 160x160
screen.

French & German

Spanish

Rechargable lithium ion

batteries

Rechargable lithium ion
batteries

Built-in wireless connections.

Rechargable lithium ion
batteries. 2MB ROM

Includes alpha pager.

Includes built-in scanner

Ruggedized device with

built-in scanner.

Ruggedized device with
built-in scanner and Spectrum
24 wireless radio network

interface.

Handspring Visor 2or 128K 3.1 EZ x x Springboard[tm)] slot and
SMB built-in microphone.

IBM WorkPad PC Companion 2MB 96K 30 DB x x x Original WorkPad PC
Companion

IBM WorkPad PC Companion 4MB 128K 3.1 EZ x x x English and Japanese
versions.

IBM WorkPad ¢3 PC Companion 2MB 128K 3.1 EZ x x x Englishand Japanese
versions. Rechargable lithium
ion batteries. Same form
factor as Palm V[tm]

organizer.

Qualcomm pdQ smartphone 2MB 128K 3.02 DB x «x Built-in phone - pdQ 800 and
pdQ 1900 differ only in
carrier frequency -- a
difference necessary based on

the area of use.

TRG TRGpro 8MB 128K 33 EZ x x x CompactFlash[tm] Type VII
slot. Improved audio.

CPU Types: If listed as "DB", it is the Motorola Dragonball NC68328 chip. If CPU is listed as "EZ", it is
the Motorola Dragonball EZ chip, officially called the Motorola NC68EZ328.

§ Current Palm VII[tm] devices have the original Dragonball CPU. Future devices may use the Dragonball
EZ CPU.

[Symbol SPT1500 ROM version should be 3.0.2r3. There may be devices with earlier ROM versions in

the channel. Such units should update to ROM version 3.0.2 RELEASE 3 which fixes a potential data loss
problem involving low-battery power management.

@ PagerCard does not add IR capability to the Palm Pilot 1000, 5000, Personal, or Pro models. However,
it does not affect the existing IR capability of a Palm III[tm] device.

Hardware families

The following groups of devices use identical logic board designs, except for the memory card::
1. Pilot 1000, Pilot 5000, Pilot w/1MB upgrade
2. PalmPilot Personal, PalmPilot Professional.

3. Palm III[tm] organizer, Palm III[tm] Upgrade, original IBM WorkPad PC Companion
4. Palm V[tm] organizer, IBM Workpad ¢3 PC companion

Home !Patm 08 Piattarm IP'.r(m Ecunmuyl Licensing | OEM meemnps‘ Business Alhancus' Enterprise Iflwslopefs

Palm (S Platform »

Palm Economy >

DEM Partnerships *»

Business Alliances »

Getting Started

Technical Resources

Business and Marketing

Solution Provider
Program

Platinum Program »

News and Events 4

About Palm, Inc. L

Site Map

Contacts »

Quick lndex | Go]
Business Info

Conduits

Contact Palm

Creator ID

Dev Seeding

[Search U

Begome a
Beveioperl
CLICK FOR DETAILS

v
v
v
y

ROM Image File Downloads (Clickwrap - USA Developers Only)

Each downloadable package contains a text file entitled "Appendix". Each such
appendix shall be considered an appendix to your Prototype License and
Confidentiality Agreement.

Palm OS® ROMs are intended for use with the Palm OS Emulator. For general
information about the Emulator and links to documentation, tools, third-party extras,

and other Emulator-related resources, see the Palm OS Emulator page. The newest

versions of the Emulator are found on the Emulator Seeding page.

These images are not intended for reflashing ROMs in actual devices. This is

not supported. If you do it anyway, make sure that the ROM image file matches the
device. Doing this incorrectly can damage your device and/or your palm.net account.
Since it is not supported, neither Palm customer support nor development support

teams can facilitate nor help you recover from reflashing operations.

About ROM Types

For Palm OS software versions before 3.5, we provide individual ROM files for each

device. Starting with Palm OS software version 3.5, we post platform ROMs for each
ROM type. These are very nearly identical to shipping device ROMs for Palm OS 3.5
and greater and should be sufficient for any debugging purpose. However, if you wish
to upload a ROM image from a device you posess, see the Emulator documentation for
details.

EZ Devices with CPU MC68EZ328

non-EZ Devices with CPU MC68328

Palm[tm] V, Vx, llIx, and more.

PalmPilot[tm], Palm[tm] Ill,and more.

Color Devices supporting color Palm(tm] lllc, and more.

Palm VII[tm] ROMs

Palm VII[tm] ROM Images contain strong encryption technology and by United States

law cannot be exported to certain countries. We can attempt to determine the country

of origin of your Internet connection. If we determine that you are connecting from
approved countries, you will be able to download the files. If we are unable to
determine your country of connection (or you are connecting from an embargoed

country), you will not be able to get these files from this web site.

Get Palm VII[tm] ROMs.

Palm OS® Software version 3.5

Language ROM Type Non-debug Debug

English ~ Color Win / Mac Win/ Mac

English EZ Win / Mac Win / Mac

English Non-EZ Win / Mac Win / Mac

German Color Win / Mac Win / Mac

German EZ Win / Mac Win / Mac

German Non-EZ Win / Mac Win/Mac

Spanish ~ Color Win / Mac Win / Mac

Spanish EZ Win / Mac Win/ Mac

Spanish Non-EZ Win / Mac Win / Mac

French Color Win / Mac Win / Mac

French EZ ‘Win / Mac Win/ Mac

French Non-EZ Win / Mac Win/ Mac

Italian Color Win / Mac

Italian EZ Win / Mac

Italian Non-EZ Win / Mac

Japanese Color Win / Mac

Japanese EZ Win / Mac

Japanese EZ - 2MB flash Win / Mac

There are also pre-release versions of Palm OS software version 3.5 with web clipping
wireless support. ROM images with web clipping contain strong encryption technology
and by United States law cannot be exported to certain countries. We can attempt to
determine the country of origin of your Internet connection. If we determine that you
are connecting from approved countries, you will be able to download the files. If we
are unable to determine your country of connection (or you are connecting from an
embargoed country), you will not be able to get these files from this web site.

Get Web Clipping ROMs.

Palm OS® Software version 3.3

Language ROM Type Non-debug Debug

English ~ Palm III[tm] organizer Win / Mac Win / Mac

English Palm V[tm], Palm Vx[tm], & Win / Mac Win/ Mac
Palm IIIx[tm] organizers

French Palm ITI[tm] organizer ‘Win / Mac

French Palm V[tm], Palm Vx[tm], & Win / Mac
Palm IIIx[tm] organizers

German Palm III[tm] organizer Win / Mac

German Palm V[tm], Palm Vx[tm], & ‘Win / Mac

Palm IIIx[tm] organizers

Palm OS® Software version 3.2

Palm VII[tm] ROM images contain strong encryption technology and by United States
law cannot be exported to certain countries. We can attempt to determine the country
of origin of your Internet connection. If we determine that you are connecting from
approved countries, you will be able to download the files. If we are unable to
determine your country of connection (or you are connecting from an embargoed

country), you will not be able to get these files from this web site.

Get Palm VII[tm] ROMs.

Palm OS® Software version 3.1

Language ROM Type Non-debug Debug

English ~ Palm V[tm] organizer Win / Mac Win / Mac

Encli Palm IIIx[tm] & Palm Ille[tm] Win / Mac ‘Win / Mac
nglish ;

organizers

French Palm V & Palm IIIx organizers Win / Mac

German Palm V & Palm IIIx organizers Win / Mac

Spanish Palm V & Palm IIIx organizers Win / Mac

Palm OS® Software version 3.0

Language ROM Type Non-debug Debug

English Palm III[tm] organizer ‘Win / Mac ‘Win / Mac

French Palm III organizer ‘Win / Mac

German Palm III organizer Win / Mac

Spanish Palm III organizer Win / Mac

Palm OS® software version 2.0

Language ROM Type Non-debug Debug

English PalmPilol Professional[tm] Win / Mac Win / Mac
organizer

English PalmPilot Personal[tm] organizer ‘Win / Mac

Palm OS® software version 1.0

Language ROM Type Non-debug

English Pilot 1000[tm] & Pilot 5000[tm] Win / Mac
organizers

Home [F’E&m 08 Platiarm | Palm Economy | Licensing | UEN Pmuwnlnps! Business A“li}flct‘h‘ Emterprise | Developers

Digital DNA
from Motorola

Solutions Home

SEARCH

ADVANCED

Product Catalog

Microprocessors

32 Bit

68K/ColdFire

M683XX

Related Links

General
DragonBall
Information

DragonBall[tm] processor. By providing 3.3V, fully
static operation in an efficient package, the MC68328
delivers cost-effective performance to satisfy the N

extensive requirements of today’s portable consumer Questions

Motorola
Semiconductor F=55

Products /

Products Support Contact About Us Site Map

MC68328: DragonBall[tm] Integrated Microprocessor

As the portable consumer market grows at full speed, Page Contents
system requirements are becoming more rigorous than
ever. Minimum components, small board space, low ® Features
power consumption, and low system cost are several ® Parametrics
minimum criteria to a successful product. To address @ Documentation
these needs, Motorola designed the MC68328 ® Tools

® Design Tools
® Frequently Asked

Product Picture

MC68328 Features

® Static 68EC000 Core Processor-Identical to MC68EC000 Microprocessor
O Full Compatibility With MC68000 And MC68EC000
O 32-Bit both External and Internal Address Bus capable of addressing

4GB Space

O 16-Bit On-Chip Data Bus For MC68000 Bus Operations
O Static Design Allows Processor Clock To Be Stopped Providing

Dramatic Power Savings
O 2.7 MIPS Performance At 16.67-MHz Processor Clock

® External M68000 Bus Interface with Dynamic Bus Sizing for 8-bit and 16-bit
Data Ports

® System Integration Module (SIM28), Incorporating Many Functions Typically
Relegated to External Array Logic, such as:

O System Configuration, Programmable Address Mapping
O Glueless Interface to SRAM, EPROM, FLASH Memory

O Sixteen Programmable Peripheral Chip Selects With Wait State
Generation Logic

O Interrupt Controller with 13 flexible inputs

O Programmable Interrupt Vector Response For On-Chip Peripheral
Modules

O Hardware Watchdog Timer
O Software Watchdog Timer
O Low-Power Mode Control
O Up to 78-Bit Individually Programmable Parallel I/O Ports
O PCMCIA 1.0 Support

® UART
O Support IrDA Physical Layer Protocol
O 8 Bytes FIFO on Rx and Tx

® Two Separated Serial Peripheral Interface Ports (Master and Slave)
O Support For External POCSAG Decoder (Slave)
O Support for Digitizer from A/D Input or EEPROM (Master)

® Dual Channel 16-Bit General Purpose Counter/timer

O Multimode Operation, Independent Capture/Compare Registers
O Automatic Interrupt Generation
O 240-ns Resolution At 16.67-MHz System Clock
O Each Timer Has An Input And An Output Pin for Capture and Compare

Pulse Width Modulation Output For Sound Generation
O Programmable Frame rate
O 16 Bit programmable
O Supports Motor Control

® Real Time Clock
O 24 Hour Time
O One Programmable Alarm

® Power Management

O 5V or3.3V Operation
O Fully Static HCMOS Technology
O Programmable Clock Synthesizer for Full Frequency Control
O Low Power Stop Capabilities
O Modules Can Be Individually Shut-down
O Lowest Power Mode Control (Shut Down CPU and Peripherals)

©® LCD Control Module
O Software Programmable Screen Size To Support Single (Non-Split)

Monochrome/ STN Panels

O Capable Of Direct Driving Popular LCD Drivers/Modules From
Motorola, Sharp, Hitachi, Toshiba etc.

O Support Up To 4 Grey Levels
O Utilize System Memory as Display Memory

IEEE 1149.1 Boundary Scan Test Access Port JTAG)
Operation From DC To 16.67 MHz (Processor Clock)
Operating Voltages of 3.3V + 0.3V and 5V + 0.5V
Compact 144-Lead Thin Quad Flat Pack (TQFP) Package

[top]

MC68328 Parametrics

v
Processor Speed Bus Interface Performance_1 Voltage

(MHz) (Bits) (MIPS) (§%) Package

16 32 addr/16 data 2.7 @ 16MHz 33-5.0 144 TQFP

[top]

MC68328 Documentation

Application Note

i g Date Last
Document ID Name Type Format Size Rev Modified

MCG68EZ328DLFLASH MC68EZ328 Methods of Application pdf 30k 1 14-DEC-1996
downloading code or data to Note
flash

MCG68EZ328DTMF Generating DTMF with Application pdf 241k 1 15-FEB-1999
PWM module Note

MCG68EZ328KEYPAD MCG68EZ328 Minimum I/O Application pdf 89k 1 30-SEP-1998
to Matrix Keyboard with Note
DragonBall TM EZ328

MC68EZ328PLLVCC PLLVCC Circuit Design for Application pdf 38k 1 17-SEP-1998

DragonBall TM (M(C68328) Note

and DragonBall TM -EZ
(MC68EZ328)

MC68EZ328PWM MCG8EZ328 Audio Application pdf 79k 1 06-NOV-1998
Generation by DragonBall ~ Note
TM MC68EZ328

MCG68EZ328SRAM16 MCG8EZ328 16bit SRAM Application pdf 70k 1 12-NOV-1998

Interface Note

AN1767/D MC68328 and MC68EZ328 Application pdf 20k 0 30-SEP-1998
DragonBall Power Note
Management

Fact Sheets

Document ID Name Type Format Size Rev Date Last Modified

M68000MTS Memory Test Software for 68K~ Fact Sheets pdf 114k 0 01-JAN-1999

Miscellaneous

= Date Last
Document ID Name Type Format Size Rev Modified

MC68328P/D MC68328 and MC68328V ~ Miscellaneous pdf 26k 1 05-OCT-1995
Integrated Portable System
Processor - DragonBall

XC68328PV MC68328 Chip Errata - Miscellaneous pdf 10k 1.0 18-JUL-1996
Mask 3G58E/OH51K

MCG68EZ328CC Contrast Circuit for Postive Miscellaneous pdf 7k 0 04-NOV-1998
VEE

MCG8EZ328LPF EZ328 Demo Miscellaneous pdf 16k 2 19-APR-1998

MCG68EZ328PCMCIA2 MCG68EZ328 PCMCIA Miscellaneous pdf 180k 1 26-NOV-1998
Release 2.0 Interface Board
for DragonBall Update

Reference Manual

- e Date Last
Document ID Name Type Format Size Rev Modified

M68000PM/ER 68K Programmer’s Ref. Reference txt Ok - -
Manual Errata Manual

Users Guide

" Date Last
Document ID Name Type Format Size Rev Modified

MC68328UM/D MC68328 DragonBall Users pdf 547k 1 06-NOV-1997
Microprocessor User’s Manual ~ Guide
Preliminary

MC68328UMAI/D MC68328 User's Manual Users pdf 17k 0 23-0CT-1998

Addendum - LCD Controller Guide
Timing Diagram

MC68328UMA2/D MC68328 User's Manual Users pdf 86k 0 14-JAN-1999
Addendum - ID Register Guide

MCG68328UME/D MC68328 Spec Errata for Users pdf 18k 0O 01-NOV-1997

DragonBall MC68EZ328 User’s Guide
Manual

MC68000UM/D M68000 8-16-32-Bit Users pdf 998k 9 31-DEC-1993
Microprocessors User’s Manual ~ Guide

MC68000UMAD/AD M68000 8-16-32-Bit Users pdf 37k 1 31-DEC-1994
Microprocessor User’s Manual ~ Guide
Addendum

[top]

MC68328 Tools

Tools

T . Date Last Document ID Name Type Format Size Rev Modified

MG68000SC1 Ackerman Benchmark With a txt 0k - 20-DEC-1993
Downloadable C Source Code
File

M68000SC6 Dhrystone 2.1 Benchmarking ~ Dhrystones txt 17k 2.1 25-MAY-1988
Part 1 (C Header File)

M68000SC7 Fibonacci Benchmark With txt 1k - 20-DEC-1993
Downloadable C Source Code
File

M68000SC8 Sieve Benchmark With txt 1k - 20-DEC-1993
Downloadable C Source Code
File

M68000SC9 Dhrystone 2.1 Benchmarking ~ Dhrystones txt 6k 2.1 25-MAY-1988
Part 1

MO68000BFP S-Record to C-Struct or Binary = Software txt 7k - -
File Program Developers

Tools

M68000ASS/SIM 68000 Assembler/Simulator for Software zip 156k - -
MS-DOS Developers

Tools

MO68000XASS M680x0 cross assembler Software zip 113k - -
MS-DOS Developers

Tools

MO6B000UNIX 68K Assembler-Berkeley UNIX Software arc 67k - %

Developers
Tools

M68000AS332 AS332.ARC-Freeware Software arc 57k - -
Developers

Tools

MO68000ASMBLR 68K Assembler v 2.71 Software Izh 54k - -
Developers
Tools

M68000CPLR 68K Compiler Software html 0k - -

Developers
Tools

M68000MON Monitor for 68K Educational ~ Software zip 148k - -
Computer Board Developers

Tools

M68000AMPRT Amiga Port of Matthew Software html 0k - -
Brandt’s CC68K Compiler Developers

Tools

[top]

MC68328 Design Tools and Data

ID

MC68328ADS

MC68328 ADSUM/D

Name

MC68328 Application Development System

MC68328 Application Development System User’s

Manual

MC68328SCHEMATICS MC68328 User’s manual ORCAD[tm] Schematics

[top]

Home | Solutions | Products | Support | Contact | About Us | Site Map |

Motorola Semiconducter Products Copyright Info ||

Motorola

DigitalDNA Semlconductor from Motorola

Home Solutions Products Support Contact About Us Site Map

SEARCH

MC68EZ328: DragonBall EZ Integrated Processor
ADVANCED

Product Catalog The MC68EZ328 is the second member of the Page Contents
DragonBall[tm] Series of Integrated Portable System

[]
Microprocessors Processors. Features -

® Parametrics

32 Bi Inheriting the display capability of the original @ Documentation

ik DragonBall processor, the MC68EZ328 features a ® Tools
more flexible LCD controller with streamlined list of

68K/ColdFire peripherals placed in a smaller package. This processor
mainly targeted for portable consumer products which i

M683XX require less peripherals and a more flexible LCD Questions

® Design Tools

® Frequently Asked

controller. By providing 3V, fully static operation in an
efficient 100 TQFP package, the MC68EZ328 delivers
cost-effective performance to satisfy the extensive

Related Links requirements of today’s portable consumer market.

General

DragonBall MC68EZ328 Features
Information

@ Static 68EC000 Core Processor-Identical to MC68EC000 Microprocessor
O Full Compatibility with MC68000 and MC68EC000
O 32-Bit internal address bus i

O 24-Bit external address bus capable of addressing maximum 4 x |6MB
blocks with chip selects CSA, CSB and 4 x 4 MB blocks with chip
selects CSC, CSD:

O 16-Bit on~chip data bus for MC68000 bus operations
O Static design alicws processor clock to be stopped to provide power

savings Xy

O 2.7 MIPS Performance at 16.58 MHz processor clock
O External M68000 Bus interface with selectable bus sizing for 8-bit and

16-bit data ports
® System Integration Module (SIM28-EZ), Incorporating Many Functions

Typically Related to External Array Logic, such as:
O System configuration, programmable address mapping
O Glueless interface to SRAM, EPROM, FLASH memory

O 8 programmable chip selects with wait state generation logic
O 4 programmable interrupt I/O and with keyboard interrupt capability
O 5 general purpose, programmable edge/level/polarity interrupt IRQ
O Other programmable I/O, multiplexed with peripheral functions up to

47 parallel VO
O Programmable interrupt vector response for on-chip peripheral modules
O Low-Power mode control

® DRAM Controller
O Support CAS-before-RAS refresh cycles and self-refresh mode DRAM
O Support 8 bit/ 16 bit port DRAM
O EDO or Automatic Fast Page Mode for LCDC access
O Programmable refresh rate
O Support up to 2 banks of DRAM/EDO DRAM

[top]

O Programmable column address size
® UART

O Support IrDA physical layer protocol up to 115.2kbps
O 8 Bytes FIFO on Tx and 12 Bytes FIFO on Rx

® Serial Peripheral Interface Port
O 16 bit programmable SPI to support external peripherals
O Master mode support

® 16-Bit General Purpose Counter / Timer

O Automatic interrupt generation
O 60-ns resolution at 16.58-MHz system clock
O Timer Input/Output pin

® Real Time Clock / Sampling Timer

O Separate power supply for the RTC
O One programmable alarm
O Capable to count up to 512 days
O Sampling Timer with selectable frequency (4Hz, 8Hz, 16Hz, 32Hz,

64Hz, 256Hz, 512Hz, 1kHz). Generate interrupt for digitizer sampling,
or keyboard debouncing.

® LCD Controller

O Software programmable screen size (up to 640%512) to support single
(Non-Split) monochrome/ color STN panels

O Capable of direct driving popular LCD drivers/modules from Motorola,
Sharp, Hitachi, Toshiba etc.

O Support up to 4 grey levels out of 16 palettes.
O Utilize system memory as display memory
O LCD contrast control using 8-bit PWM

@® Pulse Width Modulation (PWM) Module
O 8 bit resolution

O 5 Byte FIFO provide more flexibility on performance
O Sound and melody generation

@® Build-in Emulation Function

O Dedicated memory space for Emulator Debug Monitor with Chip Select
O Dedicated interrupt (Interrupt Level 7) for ICE
O One address signal comparator and one control signal comparator with

masking to support single or multiple Hardware Execution Breakpoint
O One breakpoint instruction insertion unit

® Boot Strap Mode Function
O Allow User to initialize system and download program/data to system

memory through UART

O Accept execution command to run program stored in system memory
O Provide an 8-byte long Instruction Buffer for 68000 instruction storage

and execution
® Power Management

O Fully static HCMOS technology
O Programmable clock synthesizer using 32.768 kHz/38.4 kHz crystal for

full frequency control
O Low power stop capabilities
O Modules can be individually shut-down
O Lowest power mode control

® Operation from DC To 16.58 MHz (processor clock)
® Operating Voltage of 3.0 Vto 3.6 V
® Compact 100-Lead Thin Quad Flat Pack (TQFP) and 144 Pin Ball Grid Array

(PBGA) packages

MC68EZ328 Parametrics

Processor Speed Bus Interface Performance_1 Voltage
(MHz) (Bits) (MIPS) V) Package

20 24 addr/16 data 3.4 @ 20 MHz 3.0-3.6 100 TQFP

[top]

MC68EZ328 Documentation

Application Note

3 Date Last Document ID Name Type Format Size Rev Modified

AN1767/D MC68328 and MCG8EZ328 Application pdf 26k 0 30-SEP-1998
DragonBall Power Note
Management

MC68EZ328DLFLASH MCG68EZ328 Methods of Application pdf 30k 1 14-DEC-1996
downloading code or data to Note
flash

MCG68EZ328DTMF Generating DTMF with Application pdf 241k 1 15-FEB-1999
PWM module Note

MCG68EZ328KEYPAD MC68EZ328 Minimum /O Application pdf 8% 1 30-SEP-1998

to Matrix Keyboard with Note
DragonBall TM EZ328

MCG68EZ328PWM MC68EZ328 Audio Application pdf 79 1 06-NOV-1998

Generation by DragonBall ~ Note
TM MCG8EZ328

MC68EZ328SRAM16 MCG68EZ328 16bit SRAM Application pdf 70k 1 12-NOV-1998
Interface Note

MC68EZ328PLLVCC PLLVCC Circuit Design for Application pdf 38k 1 17-SEP-1998
DragonBall TM (MC68328) Note

and DragonBall TM -EZ
(MCG8EZ328)

Fact Sheets

Document ID Name Type Format Size Rev Date Last Modified

M68000OMTS Memory Test Software for 68K~ Fact Sheets pdf 114k 0 01-JAN-1999

Miscellaneous

Date Last
Modified

MCG68EZ328/H MCG8EZ328 DragonBall ~ Miscellaneous pdf 152k 1.3 01-JAN-1998
EZ Integrated Portable
System Processor Product
Brief

MCG68EZ328CE1J75C MCG8EZ328 - Miscellaneous pdf 18k 0.1 24-MAR-1998

DragonBall-EZ Masket
1J75C

MCG68EZ328CE1J83G MCG8EZ328 - Miscellaneous pdf 15k 0.1 20-JAN-1999
DragonBall-EZ Masket

1J83G

MCG68EZ328PCMCIA2 MC68EZ328 PCMCIA Miscellaneous pdf 180k 1 26-NOV-1998
Release 2.0 Interface Board
for DragonBall Update

MCG68EZ328CC Contrast Circuit for Postive Miscellaneous pdf 7k 0 04-NOV-1998
VEE

Document ID Name Type Format Size Rev

MCG8EZ328LPF EZ328 Demo Miscellaneous pdf 16k 2 19-APR-1998

Reference Manual

" = Date Last
Document ID Name Type Format Size Rev Modified

M68000PM/ER 68K Programmer’s Ref. Reference txt Ok - -
Manual Errata Manual

Selector Guide

Document ID Name Type Format Size Rev Date Last Modified

SG167/D 68K/Coldfire Product Selector Selector pdf 444k 27 31-MAR-1999
Guide: Networking Systems Division Guide
2nd Q 1999

Users Guide

7 Date Last
Document ID Name Type Format Size Rev Modified

MCG68EZ328UM/D MC68EZ328 Users Manual - Users pdf 2488k 1 01-NOV-1998
DragonBall-EZ(tm) Guide

MC68EZ328UMA/D MC68EZ328 Users Manual Users pdf 16k 1 12-JAN-1999
Addendum Guide

MC68000UM/D M68000 8-16-32-Bit Users pdf 998k 9 31-DEC-1993
Microprocessors User’s Manual - Guide

[top]

MC68EZ328 Tools

Tools

z Date Last
Document ID Name Type Format Size Rev Modified

M68000SC1 Ackerman Benchmark With a txt Ok - 20-DEC-1993
Downloadable C Source Code
File

MG68000SC6 Dhrystone 2.1 Benchmarking ~ Dhrystones txt 17k 2.1 25-MAY-1988
Part | (C Header File)

M68000SC7 Fibonacci Benchmark With txt Ik - 20-DEC-1993
Downloadable C Source Code
File

M68000SC8 Sieve Benchmark With txt 1k - 20-DEC-1993
Downloadable C Source Code

File

M68000CPLR 68K Compiler Software html 0k - -
Developers

Tools

MG68000ASS/SIM 68000 Assembler/Simulator for Software zip 156k - -
MS-DOS Developers

Tools

M68000AS332 AS332.ARC-Freeware Software arc 57k - -

Developers

Tools

M68000UNIX 68K Assembler-Berkeley UNIX Software arc 67k - -
Developers

Tools

M68000XASS M680x0 cross assembler Software zip 113k - -
MS-DOS Developers

Tools

M68000MON Monitor for 68K Educational ~ Software zip 148k - -
Computer Board Developers

Tools

M68000ASMBLR 68K Assembler v 2.71 Software Izh 54k - -
Developers
Tools

MG68000AMPRT Amiga Port of Matthew Software html 0k - -
Brandt’s CC68K Compiler Developers

Tools

M68000BFP S-Record to C-Struct or Binary = Software txt Tk - -
File Program Developers

Tools

M68000SC9 Dhrystone 2.1 Benchmarking ~ Dhrystones Xt Ok 2.1 25-MAY-1988
Part 1

[top]

MCG68EZ328 Design Tools and Data

ID Name

MCG68EZ328ADS MCG68EZ328 Application Development System

[top]

Home | Solutions | Products | Support | Contact | About Us | Site Map |

Motorola Semiconductor Products Copyright Info ‘ |

After debugging, my handheld is reset and flas... http://oasis.palm.com/dev/kb/faq/1494.cfm

* Palmcom | MyPalm™ | Wireless | Products Palm™Store Enterprise | Education

< Home < Developers < Development Support < Knowledge Base

Q‘:i Printer-friendly version fi Detailed article information

®
Palm GS After debugging, my handheld is reset and flashes the ""Welcome' s¢

again. What’s happening and how do I fix it?
Home »

This probably means a breakpoint was left set in the code or that your application itself
Palm OS Platform » startup. When the Palm Computing platform device is reset, it sends every application

launch code to tell the applications that a reset has occurred. This means your applicati
Palm Economy ¥ launched after each reset.

E"‘E’P'i?e There are two common causes for this situation. If the problem is a lingering breakpoin
breakpoint is hit (usually the one at PilotMain) and thus the OS tries to break into the d
can’t because it isn’t attached to a debugger any more. The second possibility is that y
doesn’t properly handle these reset events from the OS (for example, by attempting to
variables that aren’t set up), in which case your code itself is the problem and might ca
triggering a reboot.

Licensing

Hlliarey Progmm

Developers b Either way, the device crashes, and the OS resets the device. The process then repeats,
Welcome screen flashes up with each reset.

Quick Index
To fix this, hold down the page-up button on the Palm Computing platform device as i

‘Cséfi‘d'u];{:m' until the preferences screen appears). Continuously pressing the page-up button during
Creator ID prevents the device from sending those startup events. You can then delete the offendi
Dev Exchange and press the reset button once more to return to normal. (If you don’t press reset again
DeviNition components of the OS might not be functional since they weren’t informed of the reset

couldn’t initialize themselves.)

Search

a Article Information

Article ID:1494
Article Type: FAQ
Article Category: CodeWarrior for Palm Computing Platform

Home | News | Events | Palm OS Platform | Palm Economy | Enterprise

Licensing | OEM Partnerships | Palm Alliance Program | Developers

©2000 Palm, Inc. All rights reserved. Terms of Use | Site Map | Contacts

lofl 07/24/01 15:42

How can I prevent a Palm OS® platform device... http://oasis.palm.com/dev/kb/faq/1028.cfm

| Paimcom MyPalm™ Wireless | Products ~ Palm™Store | Enterprise Education

<Home < Developers < Development Support < Knowledge Base

@ Printer-friendly version B Detailed article information

Pfllm OS® How can I prevent a Palm OS® platform device from going to sleep
a long operation?

Home b |
EviResetAutoOffTimer() is the routine that you want to call if you’ve got a long intens

Palm 0S Platform » running and need to disable the auto-off feature. The prototype for this function is in S
which is inside the "System" foldgr of your Palm OS Includes folder. You'll have to in|

Palm Ecanomy 4 SysEvtMgr.h manually; it’s not in the default precompiled headers.

Enterprise) ¥ When performing a very long operation, you probably want to consider having the ope
every so often and call EvtGetEvent(), so that the user can tap a Cancel button, or swit
app, or turn off their device. You could either call EvtGetEvent() inside your slow oper
dispatch the event as necessary, or you could simply return to your main event loop, ca
EvtGetEvent() with a short timeout, and continue the operation when you get a nilEver

Licensing

primonelhiips

3t Proggrem

Developers b .
Article Information

Quick Index

-Start Here-
Conduits
Creator ID
Dev Exchange
Dev Nation Home | News | Events | Palm OS Platform | Palm Economy | Enterprise

Article ID:1028
Article Type: FAQ
Article Category: User Interface Manager

Licensing | OEM Partnerships | Palm Alliance Program | Developers

Search ©2000 Palm, Inc. All rights reserved. Terms of Use | Site Map | Contacts

—

lofl 07/24/01 15:44

Palmcom | MyPalm™

Palm 0S°
Home ¥

Palm OS Platform »

Palm Economy »

Enterprise 4

Licensing »

OEM Partnerships »

Alliance Program »

Developers »

Quick Index

&) -Start Here-

Conduits

Creator ID

Dev Exchange
Dev Nation

Search

o

Wireless Products ~ Palm™ Store Enteeprise Education | | Community Company

<Home <Developers < Development Support < Knowledge Base

Developer Knowledge Base

« Printer-friendly version § Detailed article information

How do I programatically add mail to the outbox of the built-in Mail applica

To add mail to the outbox of the built-in mail application, you’ll need to populate a MailAddReco
information and call SysAppLaunch with the sysAppLaunchCmdAddRecord launch code.

The MailAddRecordParamsType struct definition can be found in AppLaunchCmd.h.

Here is a code example:

static void AddToMailApplication()
{

MailAddRecordParamsPtr theMailInfoPtr;
LocalID theDBID;
UInt theCardNo;
DmSearchStateType theSearchState;
DWord theResult;

// Allocate the new pointer for the "add-mail" paramaters
theMailInfoPtr = MemPtrNew(sizeof (MailAddRecordParamsType)) ;
if (!theMailInfoPtr)
return;

// Setup all the information for our message

theMailInfoPtr->secret = false;
theMailInfoPtr->signature = false;
theMailInfoPtr->confirmRead = false;
theMailInfoPtr->confirmDelivery = false;
theMailInfoPtr->priority = mailPriorityNormal;
theMailInfoPtr->subject = "Subject";

theMailInfoPtr->from = "a@b.com";
theMailInfoPtr->to = "b@b.com";
theMailInfoPtr->cc = "c@b.com";
theMailInfoPtr->bcc = "d@b.com";
theMailInfoPtr->replyTo = "e@b.com";

theMailInfoPtr->body = "Body...";

// Grab the Local ID and card number of the built-in mail application
DmGetNextDatabaseByTypeCreator (true, &theSearchState,

// Finally,
if (theDBID)

SysAppLaunch (theCardNo,

tell the mail application to add this item to the outbox

theDBID, 0, sysAppLaunchCmdAddRecord,

// Finally, free up the memory we allocated for the mail information.
MemPtrFree(theMailInfoPtr);

sysFileTApplication,

Article Information

Article ID: 1213
Article Type: FAQ

Overview

m =002
&%’/ OX 0 Table 1-3. Programmer’s Memory Map

Address Name Width Block Description Reset Value(hex)

Base+$000 SCR 8 SIM System Control Register $oC

Base+$100 | GRPBASEA 16 (O] Chip Select Group A Base Register $0000

Base+$102 | GRPBASEB 16 CsS Chip Select Group B Base Register $0000

Base+$104 | GRPBASEC 16 CSs Chip Select Group C Base Register $0000

Base+$106 | GRPBASED 16 CS Chip Select Group D Base Register $0000

Base+$108 | GRPMASKA 16 Cs Chip Select Group A Mask Register $0000

Base+$10A | GRPMASKB 16 CS Chip Select Group B Mask Register $0000

Base+$10C | GRPMASKC 16 CS Chip Select Group C Mask Register $0000

Base+$10E | GRPMASKD 16 CS Chip Select Group D Mask Register $0000

Base+$110 CSA0 32 CS Group A Chip Select 0 Register $00010006

Base+$114 CSA1 32 CS Group A Chip Select 1 Register $00010006

Base+$118 CSA2 32 CS Group A Chip Select 2 Register $00010006

Base+$11C CSA3 32 Cs Group A Chip Select 3 Register $00010006

Base+$120 CSBO 32 Ccs Group B Chip Select 0 Register $00010006

Base+$124 CSB1 32 CS Group B Chip Select 1 Register $00010006
Base+$128 CSB2 32 CSs Group B Chip Select 2 Register $00010006

Base+$12C CSB3 32 Cs Group B Chip Select 3 Register $00010006

Base+$130 CSCo 32 CS Group C Chip Select 0 Register $00010006

Base+$134 CSC1 32 CS Group C Chip Select 1 Register $00010006

Base+$138 CSC2 32 CS Group C Chip Select 2 Register $00010006

Base+$13C CSC3 32 CSs Group C Chip Select 3 Register $00010006

Base+$140 CSDo 32 CS Group D Chip Select 0 Register $00010006

Base+$144 CSD1 32 CS Group D Chip Select 1 Register $00010006

Base+$148 CSD2 32 CS Group D Chip Select 2 Register $00010006

Base+$14C CSD3 32 CS Group D Chip Select 3 Register $00010006

Base+$200 PLLCR 16 PLL PLL Control Register $2400

Base+$202 PLLFSR 16 PLL PLL Frequency Select Register $0123

Base+$204 Reserved = PLL Do Not Access -

Base+$207 PCTLR 8 PCTL Power Control Register $1F

Base+$300 IVR 8 INTR Interrupt Vector Register $00

Base+$302 ICR 16 INTR Interrupt Control Register $0000

Base+$304 IMR 32 INTR Interrupt Mask Register $O0OFFFFFF

Base+$308 IWR 32 INTR Interrupt Wakeup Enable Register $00FFFFFF

Base+$30C ISR 32 INTR Interrupt Status Register $00000000

Base+$310 IPR 32 INTR Interrupt Pending Register -

Base+$400 PADIR 8 PIO Port A Direction Register $00

Base+$401 PADATA 8 PIO Port A Data Register $00

Base+$403 PASEL 8 PIO Port A Select Register $00

Base+$408 PBDIR 8 PIO Port B Direction Register $00

Base+$409 PBDATA 8 PIO Port B Data Register $00

Base+$40B PBSEL 8 PIO Port B Select Register $00

Base+$410 PCDIR 8 PIO Port C Direction Register $00

Base+$411 PCDATA 8 PIO Port C Data Register $00

Base+$413 PCSEL 8 PIO Port C Select Register $00

Base+$418 PDDIR 8 PIO Port D Direction Register $00

Base+$419 PDDATA 8 PIO Port D Data Register $00

Base+$41A PDPUEN 8 PIO Port D Pullup Enable Register $FF

Base+$41C PDPOL 8 PIO Port D Polarity Register $00

Base+$41D | PDIRQEN 8 PIO Port D IRQ Enable Register $00

MOTOROLA MC68328 DRA;_QONBALI'.. PROCESSOR USER’S MANUAL 1-11

Overview

Ba =

o400 Table 1-3. Programmer’s Memory Map (Continued)

Address Name Width Block Description Reset Value(hex)

Base+$41F | PDIRQEDGE 8 PIO Port D IRQ Edge Register $00

Base+$420 PEDIR 8 PIO Port E Direction Register $00

Base+$421 PEDATA 8 PIO Port E Data Register $00

Base+$422 PEPUEN 8 PIO Port E Pullup Enable Register $80

Base+$423 PESEL 8 PIO Port E Select Register $80

Base+$428 PFDIR 8 PIO Port F Direction Register $00

Base+$429 PFDATA 8 PIO Port F Data Register $00

Base+$42A PFPUEN 8 PIO Port F Pullup Enable Register $FF

Base+$42B PFSEL 8 PIO Port F Select Register $FF

Base+$430 PGDIR 8 PIO Port G Direction Register $00

Base+$431 PGDATA 8 PIO Port G Data Register $00

Base+$432 PGPUEN 8 PIO Port G Pullup Enable Register $FF

Base+$433 PGSEL 8 PIO Port G Select Register $FF

Base+$438 PJDIR 8 PIO Port J Direction Register $00

Base+$439 PJDATA 8 PIO Port J Data Register $00

Base+$43B PJSEL 8 PIO Port J Select Register $00

Base+$440 PKDIR 8 PIO Port K Direction Register $00

Base+$441 PKDATA 8 PIO Port K Data Register $00

Base+$442 PKPUEN 8 PIO Port K Pullup Enable Register $FF

Base+$443 PKSEL 8 PIO Port K Select Register $FF

Base+$448 PMDIR 8 PIO Port M Direction Register $00

Base+$449 PMDATA 8 PIO Port M Data Register $00

Base+$44A PMPUEN 8 PIO Port M Pullup Enable Register $FF

Base+$44B PMSEL 8 PIO Port M Select Register $FF

Base+3$500 PWMC 16 PWM PWM Control Register $0000

Base+$502 PWMP 16 PWM PWM Period Register $0000

Base+$504 PWMW 16 PWM PWM Width Register $0000

Base+$506 PWMCNT 16 PWM PWM Counter $0000

Base+$600 TCTLA 16 Timer Timer Unit 1 Control Register $0000

Base+$602 TPRER1 16 Timer Timer Unit 1 Prescalar Register $0000

Base+$604 TCMP1 16 Timer Timer Unit 1 Compare Register $FFFF

Base+3606 TCR1 16 Timer Timer Unit 1 Capture Register $0000

Base+$608 TCNA1 16 Timer Timer Unit 1 Counter $0000

Base+$60A TSTAT1 16 Timer Timer Unit 1 Status Register $0000

Base+$60C TCTL2 16 Timer Timer Unit 2 Control Register $0000

Base+$60E TPREP2 16 Timer Timer Unit 2 Prescaler Register $0000

Base+$610 TCMP2 16 Timer Timer Unit 2 Compare Register $FFFF

Base+$612 TCR2 16 Timer Timer Unit 2 Capture Register $0000

Base+$614 TCN2 16 Timer Timer Unit 2 Counter $0000

Base+3616 TSTAT2 16 Timer Timer Unit Status Register $0000

Base+$618 WCR 16 WD Watchdog Control Register $0000

Base+$61A WCR 16 WD Watchdog Compare Register $FFFF

Base+$61C WCN 16 WD Watchdog Counter $0000

Base+$700 SPISR 16 SPIS SPIS Register $0000

Base+$800 | SPIMDATA 16 SPIM SPIM Data Register $0000

Base+$802 | SPIMCONT 16 SPIM SPIM Control/Status Register $0000

Base+$900 USTCNT 16 UART UART Status/Control Register $0000

Base+$902 UBAUD 16 UART UART Baud Control Register $003F

Base+$904 URX 16 UART UART RX Register $0000

1-12 MC68328 DRAGONBALL PROCESSOR USER’S MANUAL MOTOROLA

Dase =
ofHHocod

Table 1-3. Programmer’s Memory Map (Continued)

Overview

Address Name Width Block Description Reset Value(hex)

Base+$906 uTx 16 UART UART TX Register $0000

Base+$908 uMisc 16 UART UART Misc Register $0000

Base+$A00 LSSA 32 LCDC Screen Starting Address Register $00000000

Base+$A05 LVPW 8 LCDC Virtual Page Width Register $FF

Base+$A08 LXMAX 16 LCDC Screen Width Register $03FF

Base+$A0A LYMAX 16 LCDC Screen Height Register $O1FF

Base+$A18 LCXP 16 LCDC Cursor X Position $0000

Base+$A1A LCYP 16 LCDC Cursor Y Position $0000

Base+$3A1C LCWCH 16 LCDC Cursor Width & Height Register $0101

Base+$A1F LBLKC 8 LCDC Blink Control Register $7F

Base+$A20 LPICF 8 LCDC Panel Interface Config Register $00

Base+$A21 LPOLCF 8 LCDC Polarity Config Register $00

Base+$A23 LACDRC 8 LCDC ACD (M) Rate Control Register $00

Base+$A25 LPXCD 8 LCDC Pixel Clock Divider Register $00

Base+$A27 | LCKCON 8 LCDC Clocking Control Register $40

Base+$A29 LLBAR 8 LCDC Last Buffer Address Register $3E

Base+$3A2B LOTCR 8 LCDC Octet Terminal Count Register $3F

Base+$A2D LPOSR 8 LCDC Panning Offset Register $00

Base+$A31 LFRCM 8 LCDC | Frame Rate Control Modulation Register| $B9

Base+$A32 LGPMR 16 LCDC Gray Palette Mapping Register $1073

Base+$B00 HMSR 32 RTC RTC Hours Minutes Seconds Register $00000000

Base+$B04 ALARM 32 RTC RTC Alarm Register $00000000

Base+$B0C CTL 8 RTC RTC Control Register $00

Base+$BOE ISR 8 RTC RTC Interrupt Status Register $00

Base+$B10 IENR 8 RTC RTC Interrupt Enable Register $00

Base+$B12 STPWCH 8 RTC Stopwatch Minutes $00

MOTOROLA

Note

The base is $FFFFFO00 and $FFFO00 from reset. If the double-
mapped bit is cleared in the SCR, then the base is $FFFFF000.
Do not access any space within the 4K register space that is not

defined in the above table. Unpredictable results may occur.

MC68328 DRAGONBALL PROCESSOR USER’S MANUAL

Interrupt Controller

6.2 EXCEPTION VECTORS

A vector number is an 8-bit number that can be multiplied by four to obtain the address of
an exception vector. An exception vector is the memory location from which the processor

fetches the address of a software routine that is used to handle an exception. Each
exception has a vector number and an exception vector, as described in Table 6-1. User
interrupts are part of the exception processing on the MC68EZ328 and the vector numbers
for user interrupts are configurable. For additional information regarding exception
processing, see the M68000 Programmer’s Reference Manual.

Table 6-1. Exception Vector Assignment

VECTORS NUMBERS ADDRESS

SPACE ASSIGNMENT
HEX DECIMAL | DECIMAL HEX

0 0 0 000 SP Reset: Initial SSP

1 1 4 004 SP Reset: Initial PC

2 2 8 008 SD Bus Error

3 3 12 0oC i} Address Error

4 4 16 010 SD lllegal Instruction

5 5 20 014 sD Divide-by-Zero

6 6 24 018 sD CHK Instruction

4 7 28 01C SD TRAPV Instruction

8 8 32 020 SD Privilege Violation

9 9 36 024 SD Trace

A 10 40 028 SD Line 1010 Emulator

B 11 44 02C SD Line 1111 Emulator

C 12 48 030 SD Unassigned, Reserved

D 13 52 034 SD Unassigned, Reserved

E: 14 56 038 SD Unassigned, Reserved

F 15 60 03C SD Uninitialized Interrupt Vector

64 040
10-17 16-23 SD Unassigned, Reserved

92 05C

18 24 96 060 SD Spurious Interrupt

19 25 100 064 SD Level 1 Interrupt Autovector

1A 26 104 068 SD Level 2 Interrupt Autovector

1B 27 108 06C SD Level 3 Interrupt Autovector

1C 28 12 070 SD Level 4 Interrupt Autovector

1D 29 116 074 SD Level 5 Interrupt Autovector

1E 30 120 078 SD Level 6 Interrupt Autovector

1F 31 124 07C SD Level 7 Interrupt Autovector

MOTOROLA MC68EZ328 USER’S MANUAL 6-3

Interrupt Controller

Table 6-1. Exception Vector Assignment (Continued)

128 080
20-2F 32-47 SD TRAP Instruction Vectors

188 0BC

192 0Co .
30-3F 48-63 SD Unassigned, Reserved

255 OFF

256 100
40-FF 64-255 SD User Interrupt Vectors

1020 3FC

NOTES:

1.Vector numbers 12—14, 16-23, and 48-63 are reserved for future enhancements by Motorola.
None of your peripheral devices should be assigned to these numbers.

2.Reset vector 0 requires four words, unlike the other vectors which only require two words, and it is located in
the supervisor program space.

3.The spurious interrupt vector is taken when there is a bus error indication during interrupt processing.

4.TRAP #n uses vector number 32+ n (decimal).

5.SP denotes supervisor program space and SD denotes supervisor data space.

7 Note: The MC68EZ328 does not provide autovector interrupts. At system start-up, you
! need to program the user interrupt vector so that the processor can handle

interrupts properly.

6.3 RESET

The reset exception corresponds to the highest exception level. A reset exception is
processed for system initialization and to recover from a catastrophic failure. Any processing
that is in progress at the time of the reset is aborted and cannot be recovered. Neither the
program counter nor the status register is saved. The processor is forced into the supervisor
state. The interrupt priority mask is set at level 7. The address in the first 2 words of the reset
exception vector is fetched by the processor as the initial SSP (Supervisor Stack Pointer),
and the address in the next two words of the reset exception vector is fetched as the initial
program counter.

At start-up or reset, the default chip-select (CSAD) is asserted and all other chip-selects are

negated. You should use CSAO to decode an EPROM/ROM memory space. In this case,
the first two long-words of the EPROM/ROM memory space should be programmed to
contain the initial SSP and PC. The initial SSP should point to a RAM space and the initial
PC should point to the start-up code within the EPROM/ROM space so that the processor
can execute the start-up code to bring up the system.

7 Note: The MC68EZ328 supports the reset instruction. However, the RESET pin will

: not go low when you issue this instruction because it is an input-only signal.

6-4 MC68EZ328 USER’S MANUAL MOTOROLA

Reprinted from the Nov/Dec 1996 issue of PDA Developers. ©1996-1997 by Creative Digital Publishing Inc. All rights reserved.

HACKING THE PiLOT: BYPASSING THE PaLm OS
Edward Keyes
DaggerWare
mistered@]stresource.com

tandard app without even launching the Simulator. About now
you might be asking yourself: “Is this all this cute little device can

do? Isn't there more to life than personal productivity applications?”
This article is for you. The Pilot has a lot of potential that can only

be reached by going beyond the Palm OS API routines.
I show you how to hack the Pilot to do grayscale, how to access the

sound-generation circuitry directly, and how to install a system patch of
your very own. | assume you have a fairly high level of Pilot program-
ming proficiency - we're entering the realm of no error checking and
soft resets galore.

Abandon thy Simulator, all ye who enter here. The following hacks
do not work correctly on the Pilot Simulator, so stock up on AAA
batteries for some on-Pilot debugging. That means you had better make
sure your HotSync backups are current, too.

ou've gotten your Pilot, installed the SDK, and you can code a
! s

THAT's RIGHT, | SAID GRAYSCALE
It is a little-known fact that the Motorola 68328 Dragonball processor in
the Pilot includes on-chip support for simulating grayscale on a black
and white LCD panel. The processor does this by cycling pixels on and
off with each screen refresh. The average duty cycle of each pixel deter-
mines its gray shade. Though some have claimed to see pixel flickering, I

think the mode is quite smooth.
Inits standard black-and-white mode, the 68328 reads screen mem-

ory as a bit-for-bit representation of the screen. The Pilot’s display
memory is 160 lines of 20 bytes each, arranged in left-to-right and top-
to-bottom order. Within each byte, the most significant bit is the left-
most pixel.

Just as an aside, if you ever need to hack display memory directly
(and you almost certainly will at some point), you can get a pointer to
this 3200-byte area with:

VoidPtr DisplayMemory;

DisplayMemory=WinGetDisplayWindow () ->displayAddr;

Note, however, that Palm OS windows are prone to move around in

memory somewhat irregularly, so be sure to get this pointer anew at
least every event cycle.

In grayscale mode, each pixel requires two bits, so display memory
now occupies 6400 bytes, consisting of 160 lines of 40 bytes each, ar-
ranged the same way as before, with the left-most pixel in the two most
significant bits. To do grayscale, you have to access display memory

directly, since there are no routines to do it for you. Furthermore, you
have to allocate it yourself, either in the dynamic heap or in the static
heaps if you're willing to put up with the write protection.

For the ins and outs of the 68328's LCD controller circuitry, I refer
you to the Dragonball User’s Manual, available from Motorola (part
number MC68328UM/AD). I highly recommend every Pilot hacker
getting a copy. You can also get a version online in PDF format at http://
129.38.233.1/aesop/novu/docs/um/328um.pdf.

GOING TO GRAYSCALE MODE
In this section I digest a chapter of the Dragonball User’s Manual and tell
you what you really need to do, based on my own experimentation. The
one routine you need is:

static void GraySwitchDisplayMode
(short int mode, unsigned char **displayaddr)

// This performs all the register accesses to switch
// between grayscale and black and white modes.

// The displayaddr variable is used in the following way:

// on calling this procedure, load displayaddr with a
// pointer to the address of the new display starting

// address. The function will return a pointer to the

// old address in the same way. The calling procedure is

// responsible for saving and then giving back the old

// black and white display starting address.
// (mode=1 is switch to grayscale, mode=0 is switch to

// black and white)

ULong *SSA;

unsigned char *VPW,*PICF,*FRCM, *LBAR, *CKCON;

unsigned char *oldstart;

SSA=(ULong *) OxFFFFFAQQ;

VPW=(unsigned char *)0xFFFFFAQS;

PICF=(unsigned char *)O0xFFFFFA20;
FRCM= (unsigned char *)OxFFFFFA31;

LBAR= (unsigned char *)0xFFFFFA29;

CKCON= (unsigned char *)0xFFFFFA27;

if (mode==1) { //switch to grayscale

// save old display starting address

oldstart=(unsigned char *)*SSA;

//switch off LCD update temporarily

*CKCON=*CKCON & Ox7F;

//set new display starting address

*SSA= (ULong) *displayaddr;

//virtual page width now 40 bytes (160 pixels)

*VPW=20;

*PICF=*PICF | 0x01; //switch to grayscale mode

*LBAR=20; //line buffer now 40 bytes

//register to control grayscale pixel oscillations

*FRCM=0xB9;

//let the LCD get to a new frame (20ms delay)
SysTaskDelay(2) ;

//switch LCD back on in new mode
*CKCON=*CKCON | 0x80;
//return original display address for switch back
*displayaddr=oldstart;

}
else if (mode==0) { //switch to black and white

//save old display starting address
oldstart=(unsigned char *)*SSA;

//switch off LCD update temporarily

*CKCON=*CKCON & Ox7F;

//set new display starting address
*SSA= (ULong) *displayaddr;

//virtual page width now 20 bytes (160 pixels)

*VPW=10;

*PICF=*PICF & OxFE; //switch to black and white mode

*LBAR=10; // line buffer now 20 bytes

//let the LCD get to a new frame (20ms delay)
SysTaskDelay(2) ;

//switch LCD back on in new mode

*CKCON=*CKCON | 0x80;
//return original display address for switch back

*displayaddr=oldstart;

The internal registers for the 68328 processor are located starting at
address OXFFFFF000. To access these directly, all you need to do is set a
C pointer to the absolute address you want and use assignment by
reference.

There are six important registers for controlling the LCD controller
submodule that need to be manipulated in the right ways to successfully
switch modes. The SSA (screen starting address) register holds a pointer
to the 3200 or 6400-byte display memory. Actually, the 68328 is able to

PDA Deveropers 4.6 + Nov/DEc 1996

Reprinted from the Nov/Dec 1996 issue of PDA Developers. ©1996-1997 by Creative Digital Publishing Inc. All rights reserved.

perform hardware pans and scans by manipulating the starting address
inside a larger virtual display memory, but that's another topic.

The VPW (virtual page width) register stores the number of words
to offset one line from the next in memory. This becomes extremely
useful for a virtual display memory larger than the screen, but for now
we just need 20 or 40 bytes per line.

The LBAR (last buffer address register) contains the number of
words needed for a single display line. In cases where you are hardware
scrolling the display by fractions of a byte horizontally (yes, this is
possible too), it needs to be a word or two larger, to accommodate pixels
hanging off the edge. Here it's the same as our VPW value.

The FRCM (frame rate modulation control) register deals with the
innards of the gray scale simulation. If every pixel flashed on and off
synchronously, it would be very disconcerting. The values in this regis-
ter are used to determine how adjacent pixels act. Typically the high and
low nibbles should be odd numbers differing by two. The default value
0xB9 seems to work quite well on my Pilot, but the optimum timing
might change with the manufacturer of your specific LCD panel.

The PICF (panel interface configuration) register controls the LCD
bus bandwidth and the display mode. For our needs, the only impor-
tant bit is bit 0, which is off for black and white, and on for two-bit
grayscale mode.

And finally, the CKCON (clocking control) register is needed be-
cause a mode switch does not take effect until the LCD can power down
and resync on a new frame. GraySwitchDisplayMode contains

a 20 ms delay for the LCD panel to rest between mode switches. This
delay can be bypassed by extremely clever hacking, but true to form, [
found something that worked and then stopped looking.

THE GRAYSCALE PALETTE
The two-bit grayscale mode is actually an indexed color mode. The Pilot
can display four simultaneous shades out of a palette of seven (includ-
ing black and white). This is actually extremely useful, since not every-
one’s LCD screen will have the same characteristics. Between the palette
choice and the contrast knob, you should be able to get four distinct
shades.

Here's a bit of code to set the palette. This accesses another register
in the LCD controller, and doesn’t do anything fancy, but it’s an easy
way of figuring out the translation from gray intensity values to the
actual bits to shove into the GPMR (gray palette mapping) register.

static void GraySetPalette

(short int gray0O, short int grayl, short int gray2,
short int gray3)

// This sets the palette of the 4 active shades of gray

// out of a selection of 7. The four parameters represent

// the shades of the 00, 01, 10, and 11 bit patterns,

// respectively. The palette of 7 is as follows, in
// terms of darkness density:

// 0=0/16, 1=4/16, 2=5/16, 3=8/16, 4=11/16, 5=12/16,
// 6=16/16, and 7=16/16. There are two active bit values

// for solid black; either will work.

Word *GPMR;
Word temp;

GPMR= (Word *)OXFFFFFA32;

*GPMR=gray2 + (gray3<<4) + (gray0<<8) + (grayl<<12);

I'am in the process of coding up some rudimentary grayscale library
routines. While the full suite isn't in good enough shape for this article,
feel free to drop by the DaggerWare Web site at http://www.1stre-
source.com/~mistered/dagger.htm. By the time you read this, I should
have source code posted (and maybe by then someone will have figured
out how to do a shared library so everyone will only have to install the
code once).

Anyway, the above two routines should give you enough to get
started. Just allocate a 6400-byte block in the dynamic heap, call Gray-
SwitchDisplayMode, set your palette, and you are free and clear to
manipulate the bitmap anyway you want.

I should point out that it may be advantageous to create a routine to
copy the black and white display to the grayscale display. That way you
can take advantage of many Palm user interface features like form
drawing.

A caveat to grayscale mode: the Applications dialog box is invisible,
since it draws in the one-bit display memory. Be sure to give your user a
way to leave your app in a graceful manner. At the very least, switch
back to black and white on an appStopEvent.

DIRECT SOUND CONTROL
Theoretically, the Pilot should be able to do voice-quality digitized
sound. The 68328 has pulse width modulation (PWM) circuitry that
essentially lets you turn a signal line high or low with very good timing.

Unfortunately, Motorola intended U.S. Robotics to put a low-pass
filter on the output of that signal line in order to blend the up-down-
up-down of the single-bit line into a smoother curve. The filter is sup-
posed to take a local average, turning the duty cycle of a fast pulse into
an approximate voltage value to pass onto the piezoelectric speaker.

The Pilot does not have such a filter. According to the Palm tech
support guys (cool dudes all, must say, and thanks for everything), the
addition of a low-pass filter turned the output volume into almost
nothing. So, until the next generation Pilot arrives, we are stuck with
hearing the output of that one signal line. Instead of 16-bit sound like
CDs, we have one-bit sound to play with.

Theoretically, you ought to be able to hack even one-bit sound into
some sort of polyphonic music, or even rudimentary sampled sound.
I've heard tales of similar hacks being done on some of the early Apple
machines, but that is really beyond the scope of this article. I'm just
going to tell you about the registers and let you play around with getting
four-voice harmony yourself.

THE SOUND REGISTERS
The basic structure of the PWM is simply two countdown timers, a
width register and a period register. At each clock pulse, both timers are

decremented. Starting out, the output signal is high. When the width
register hits zero, the output signal goes low. When the period register
then hits zero, the signal is reset high again and both registers are re-
loaded to start the cycle. Loading the width register with half the period
value gets you a perfect high-low-high-low square wave output, for
example.

Both registers are double-buffered, so you can load new width and
period values while the old ones are still counting down. This is very
important, because it means that your code doesn't need to be any more
tightly timed than one period, which means about a thousand CPU
instructions or so. In other words, you can do this from C rather than in
assembly.

The PWM circuitry can generate an interrupt on a period compare,
but coding Pilot interrupt routines is beyond my expertise. I recom-
mend a synchronous sound generation method, just like the Pilot ROM
uses. You just set up a tight while loop waiting for a period timeout

before loading the new value. Here are the registers you need:

Word *PERIOD, *WIDTH, *PWMREG;

PERIOD = (Word *)OxFFFFF502;
WIDTH = (Word *)OxFFFFFS504;
PWMREG = (Word *)OxFFFFF500;

The PERIOD register contains the number of clock cycles in a period.
For audio frequencies, this will typically be on the order of 100 to 1000,
depending on your clock divider value.

The WIDTH register contains the number of clock cycles before the
output signal changes. Usually you want to calculate your width values
as certain fractions of a period, although for free-form sampled sound,
both the PERIOD and the WIDTH are freely changeable.

PDA Deverorers 4.6 - Nov/DEc 1996

Reprinted from the Nov/Dec 1996 issue of PDA Developers. ©1996-1997 by Creative Digital Publishing Inc. All rights reserved.

The PWMREG is the pulse width modulator control register. It
handles powering up the sound generation circuitry and setting the
clock divider. The lowest three bits control the clock divide. Starting
from the Pilot’s standard 16.67 MHz clock, the input to the PWM
registers is divided by a fraction to reduce the effective frequency. The
divider codes are: 000 divide by four, 001 divide by eight, 010 divide by
16, 011 divide by 32, 100 divide by 64, 101 divide by 128, 110 divide by
256, and 111 divide by 512. (I should point out that there is an error in
the original 68328 manual regarding these values. The correct ones
should be obtained from the manual's “addendum and errata” sheet.)

Bit four (0x0010) enables and disables the PWM circuitry (be sure
to turn if off to save power when your program ends). Everything else

should be set to zero to avoid enabling interrupts and so forth.
Reading bit 15 (0x8000) tells you when you need to load a new

period (it's a poor person’s interrupt notification). The main part of
your sound playing routine is spent in a loop like this:

// null loop waiting for new period

while ((*PWMREG & 0x8000)==0) { }

This should tell you enough to get started hacking the Pilot's sound
circuitry. If you get sampled sound or multipart harmony working, let
me know. And definitely keep in mind that there is a hack just waiting
to be written to generate the two-tone frequencies that phones use. Just
picture a special Graffiti character you could write that would automati-
cally dial a selected phone number in the Address Book.

THE BIGGIE: TRAP PATCHING
Assuming that you figure out how to create two-tone frequencies, how
would you actually go about hacking into the Graffiti code in order to
activate your routine at the right time? Good question.

You may have given a passing thought or two to how the CodeWar-
rior linker knows exactly where in ROM all the different Palm OS
system routines are so that you can call them in your applications. Well,

actually it doesn't. This is the wonder that is the trap dispatcher.
Basically, what happens is that when you want to call a system

routine, the compiler generates a certain “illegal” opcode. This causes
the CPU to jump to a certain low memory address where a table of
pointers to the actual routines are stored. The trap dispatcher looks up
the address of the routine you want, and jumps directly there. That way
your application won't have to be changed when the Pilot ROMs are
updated, since the trap table can just be altered to point to the new
location of the routines.

However, what this means for us is that by manipulating the trap
table, we can get the Pilot to call our routines instead of the ROM ones.
By installing a trap patch onto SysHandleEvent for instance, you

automatically gain access to the event loop for all running applications,

in ROM or in RAM.
Needless to say, this is an immensely powerful tool. It also goes

without saying that you can seriously screw up your Pilot this way. In

addition, it needs to be said that the Pilot ROMs are, according to the
tech support guys, not 100% robust. Sometimes the built-in routines
expect things to be a certain way, and if a trap patch screws that up,
you're in trouble. That said, basic trap patching is perfectly fine, and
main routines like SysHandleEvent can withstand a patch with
no problem.

INSTALLING YOUR PATCH
Say you want to temporarily install a routine in your application as a

trap patch onto SysHandleEvent. The appropriate routine to use

is SysSetTrapAddress. Just give it the address of your patch
routine and go. For the trap codes of all the various system routines,
take a look in the SYSTRAPS.H header file. Here’s some code (but there
is something wrong with it):

Boolean (*oldtrap) (EventPtr event);

static Boolean MyNewSysHandleEvent (EventPtr event)

{
Boolean result;

// do some fun stuff

result = (*oldtrap)

return (result);
(event) ;

}

void InstallMyPatch(void)

{
oldtrap = SysGetTrapAddress (sysTrapSysHandleEvent);

SysSetTrapAddress

(sysTrapSysHandleEvent, MyNewSysHandleEvent) ;

The installation is exactly what you need to do, but have a look at
the part where the trap routine calls the original ROM routine. It ac-
cesses a global variable from a trap. You can't do that without some
really special assembly language hacking, because the system trap rou-
tines get called from all over the place. Chances are the global variable
area is set to point to the Palm OS system globals instead of your own
application’s a lot of that time.

The easiest way to get around that is to use the Pilot Feature Manag-
er to save and restore the original trap result:

static Boolean MyNewSysHandleEvent (EventPtr event)

{
Boolean result;
Boolean (*oldtrap) (EventPtr event);

// do some fun stuff

FtrGet (MyCreatorCode, MyID, &oldtrap);

result = (*oldtrap) (event);

return (result);

}

void InstallMyPatch(void)

{
DWord oldtrap;

oldtrap = SysGetTrapAddress (sysTrapSysHandleEvent);

FtrSet (MyCreatorCode,MyID,oldtrap);

SysSetTrapAddress (

sysTrapSysHandleEvent, MyNewSysHandleEvent);

}

Depending on your compiler preferences, you might need to do some
explicit type casting to force procedure pointers into DWords and

back again, but the above is the basic idea. Note that there are different
ways your trap routine can act. It can:

* Replace the system routine altogether;
Do something special and then call the system routine;
« Call the system routine with altered parameters; or
« Call the system routine and then fiddle with the results.

The possibilities are endless.
The above example is not overly useful, since as soon as your

application quits, your routine goes away. The far better method is to
find a way to install your routine permanently in the Pilot's RAM, so it
can keep patching a trap no matter what program is running.

MY GUESS IS THAT EVERYONE AND THEIR SISTER WILL BE PATCHING SYSHANDLEEVENT

PDA DeveLopers 4.6 + Nov/DEc 1996

Reprinted from the Nov/Dec 1996 issue of PDA Developers. ©1996-1997 by Creative Digital Publishing Inc. All rights reserved.

KEEPING YOUR PATCH IN RAM
There are a couple of ways to do this. My original AppHack program
allocated a small bit of memory (16 bytes) in the dynamic heap with a
construction like this:

VoidPtr MyPointer;

MyPointer=MemPtrNew (NumBytes) ;

MemPtrSetOwner (MyPointer, 0) ;

Note that the Palm OS memory management routines automatically
clear the dynamic heap of all chunks your program allocates when your
application quits. To keep something in there on a semipermanent
basis, you need to set the chunk’s owner to zero to let the Pilot know
that this is a system-owned chunk.

Now that I've told you this, I beg you not to do it. Dynamic heap
space on the Pilot is an extremely precious commodity. Unless you need
to grab just a few bytes, try something else. Also, the dynamic heap gets
wiped with a soft reset, so if you want your patch to survive, you need to
put it somewhere else.

Another good method, used by Wes Cherry in his AlarmHack
program, is to allocate some space in a static heap and copy your patch
routine into the heap. Unfortunately, like the previous method, this
requires that you know exactly how long your patch routine is in bytes,
making it mostly unsuitable for C patches. Also, it requires some fairly
heavy use of the heap management routines, since there is no generic
Palm OS procedure to allocate a chunk in a static heap that doesn't
belong to a database.

The best method, and the one I recommend, is to compile your trap
patch routine into a separate code resource in your PRC file, and
then just lock that particular resource down in memory. The installa-
tion routine looks like this:

VoidHand MyHandle;

VoidPtr MyPatch, oldtrap;

MyHandle = DmGetResource ("code', MyPatchiD);

MyPatch = MemHandleLock (MyHandle);

oldtrap = SysGetTrapAddress (sysTrapSysHandleEvent);

FtrSet (MyCreatorCode, MyID, oldtrap);

SysSetTrapAddress (sysTrapSysHandleEvent, MyPatch);
// note you do *not* unlock the patch code handle

DmReleaseResource (MyHandle);

This method has the possible disadvantage of fragmenting the static
heaps, since it forces part of your application’s resource file to remain
locked in place. Still, unless you're running in low memory conditions,
this shouldn’t be much of a problem (and there really is no way around
it short of accessing the heap structures directly to move your patch to
an out-of-the-way place before locking it down).

LINKING PATCHES wiTH MPW
You may have noticed that I kind of glossed over the “compile your trap
patch routine in a separate code resource” part above. This is actually a
nontrivial thing to do, but it's automatic in MPW once you set up your
make file correctly.

You want to link each source code file separately, so you need to add
dependency statements to get your patch to compile and link. Here is an
excerpt from a make file (a lot of the variables are defined in the exam-
ple make files that come with the SDK, so this won't run by itself):

"{OBJ_DIR}myapp.c.o" f MakeFile "{SRC_DIR}myapp.c"

{CPP} -o "{OBJ_DIR}myapp.c.o" "{SRC_DIR)}myapp.c"

{C_OPTIONS}

"{OBJ_DIR}mypatch.c.o" f MakeFile "{SRC_DIR}mypatch.c"

{CPP} -o "{OBJ_DIR}mypatch.c.o" "{SRC_DIR}mypatch.c"
{C_OPTIONS}

myapp ff MakeFile "{OBJ_DIR}myapp.c.o"

" {OBJ_DIR}mypatch.c.o" "{SRC_DIR}myapp.r"

{LINK} -single -custom -t rsrc -c RSED

"{LIB_DIR}StartupCode.c.o" d

" {OBJ_DIR}myapp.c.o" -o myapp.code

{LINK} -single -coderesource -rt CODE=1

-m MyPatchRoutine -t rsrc -c RSED d

" {OBJ_DIR}mypatch.c.o" -o mypatch.code

{CC} -d RESOURCE_COMPILER {C_OPTIONS} -e

"{SRC_DIR}myapp.r" > myapp.i

PilotRez -v 1 -t appl -c myAp -it myapp.i -ot "myapp"

Duplicate -y "myapp" "myapp.prc"

The crucial part items are the link options in the second link state-
ment. The -coderesource switch causes the linker to compile the
patch as a freestanding code resource (also notice the lack of the
STARTUP-CODE.C.O file), and the -m switch tells the linker that the
entry point routine of the code resource should be MyPatchRou-
tine. This allows you to call that routine by jumping to the beginning
of the code resource, as we did above. The MYPATCH.C file should
have only your MyPatchRoutine routine and whatever proce-
dures it calls. The smaller the patch code resource, the less memory you
have to lock down.

The resource definition file also needs to be updated to make sure
that the patch’s code resource gets included in the PRC file. Here is a
sample MYAPPR file:

#include <BuildRules.h>

#include <SystemMgr.rh>

include "myapp.code" 'CODE' 1 as sysResTAppCode 1;
include "myapp.code" 'CODE' 0 as sysResTAppCode 0;

include "myapp.code" 'DATA' 0 as sysResTAppGData 0;

include "mypatch.code"

PatchID;

'CODE' 1 as sysResTAppCode My-

include ":Rsc:myapp.rsrc";

resource sysResTAppPrefs 0 {

30, // priority
0x1000, // stack size

0x1000 // minHeapSpace

}

The three "myapp.code" includes import the main application’s
code and global data resources. The "mypatch.code" include
statement imports the main code resource of the patchasa 'CODE'
resource with a user-defined resource ID. Since the patch has no global
data, the other two includes are not necessary for it. Note that the -rt
CODE=1 statement in the make file above determines the type and ID
of the patch code resource in the resource file.

That's all you need to know to code and install your own trap patch-
es. Of course, now we run into the dreaded topic of....

EXTENSION CONFLICTS
Macintosh users are no doubt familiar with this phenomenon. What
happens when two separate patches from two separate programs grab
the same trap?

Now THAT I'VE TOLD YOU THIS, | BEG YOU NOT TO DO IT.

PDA DeveLorers 4.6 - Nov/DEc 1996

Reprinted from the Nov/Dec 1996 issue of PDA Developers. ©1996-1997 by Creative Digital Publishing Inc. All rights reserved.

Well, if they are both well written, they both record the original trap
address and jump to it after doing their thing, so the event flow goes
from Patch? to Patchl to the ROM routine. Note that the last patch
installed is the first one called, since it installs itself directly into the trap
and acts like Patchl is the ROM routine.

What happens if Patchl is now uninstalled? It puts the ROM trap
address back into the trap table, and Patch? is disabled. Or if Patchl
detects that the trap address is no longer its own, it can leave Patch2
functioning, but now Patch2 is jumping to null memory where Patchl
used to be. There really is no way to do this elegantly without some sort
of central patch manager.

Luckily, such a central patch manager does exist — a shareware
program written by yours truly. It goes by the name of HackMaster, and
you can find all the info you can stand at the DaggerWare Web site:
http://www.Istresource.com/~mistered/hackmstr.htm.

Basically, what HackMaster lets you do is write a patch without
writing an installation app to go along with it, just like an extension on
a Mac. HackMaster takes care of installing your patch and maintaining
a proper chain of patches that go on the same trap. This allows patches
to be installed and removed in any order without a system restart. Plus,
it records your currently open suite of patches and gives you the option
of automatically reinstalling them after a soft reset (when ordinarily the
trap table is reset but your patch is still locked in memory).

If you need to set options for your patch, HackMaster provides a
control panel interface. Basically, you link another code resource into

your PRC file with an event handler for the form resources you include,
and then HackMaster opens your form and passes you events. Global
variables are still not allowed, but Feature Manager calls, databases, and
dynamic heap allocations are available for you to use.

My guess is that everyone and their sister will be patching Sys-

HandleEvent, so definitely give some serious thought as to how you
want your patch to interact with others.

CoNncLusioN
Well, that was fun. Now you should have enough info to make your

Pilot stand up and do all sorts of neat tricks. Further investigation is
needed in all three areas, though, so there’s plenty of room for Pilot
hackers to make their mark. Can you code up a decent grayscale library?
Can you get polyphonic sound from the PWM? Can you figure out how
to get access to globals from a system patch? If so, the world of the Pilot
hacker is definitely waiting for you. ¢

PDA Deverorers 4.6 « Nov/DEec 1996

Pilot Hack Tutorial

By Darrin Massena (darrin @massena.com)

28 Jun 96

This tutorial is meant to show you how to find your way around the Pilot’s memory space with the tool
Pilot Hack. Once you’ve downloaded Pilot Hack (pilhack.prc) to your Pilot ("instapp pilhack.prc") and
launched it you can begin exploring the contents of that fascinating little black (until now) box.

Pilot Hack displays memory as hex bytes, ASCII or strings and then lets you page up and down to view
more. Although it can be fun exploring a 4 gigabyte address space at random, unless you have a lot of
spare time on your hands it helps to at least have some kind of idea what is where. I happened to have a
lot of time on my hands and here’s some of what I found out (all addresses, etc. in this tutorial are in hex
unless otherwise specified):

Crude Pilot 1000 Memory Map (not verified on a Pilot 5000 yet but likely to be the same)

00000000-000003ff 68k vectors (including traps starting at $80, #15 at $bc)

000000bc Trap 15 vector (points to $10c03656)

00000000-00007£ff RAM ("Dynamic")
00008000-0fffffff faults on access attempt

10000000-10007£fff mirror of the 00000000-00007fff range above (RO w/o permission)
10008000-1001ffff more RAM ("Storage") on 128k machine (RO w/o permission)

10020000-1003ffff out of bounds but doesn’t cause a fault

10040000-10bfffff faults on access attempt

10c00000-10c7f££ff 512K ROM!

10c80000-222??2?? repeated images of the ROM

fEfff000-f££££fbl2 DragonBall registers

Very interesting! The first 32K of the Pilot’s address space is RAM that is duplicated (simultaneously
mapped to) the range $1000000-$10007fff. The memory from $0000000-$00007fff can be read from,
written to, and executed from but the memory starting at $10000000 can only be read or executed -- no
writing without gaining permission from an API (I later discovered) called MemSemaphoreReserve. The
Pilot appears to support at least a primitive form of hardware memory protection which is used to
separate "Dynamic" (Palm’s term) from "Storage" RAM and keep rogue programs from trashing
persistent system data structures, user data, and other programs accidentally. This is not real data
security, just a very sensible precaution that should protect from the majority of random software

happenings.

68328 CPU Registers

Using Pilot Hack we can view the 68328 processor’s current register state. Just enter "r" into the Graffiti
area to get a register dump. Most of these register’s contents are random or just a side-effect of Pilot
Hack’s execution but a few of them are very informative. First, you’ll notice that the program counter
(PC) is at an address in the Storage range (e.g., $1000dc48). This tells us that program code executes
directly from Storage. I won’t go into how I uncovered this but another point worth knowing is that the
executing code is exactly the code downloaded to the Pilot, not a decompressed or fixed up copy or
anything like that.

The second register of note is A7, a.k.a. SP the Stack Pointer, which points to an address in the lower

32K (e.g., $5ea4). Since a program’s stack needs to be writeable at all times it must be located in the
Dynamic area. In case you’re wondering, the standard stack size for a program is 4096 (decimal) bytes,
despite the claims in Palm’s SDK documentation that the stack is 2K. It may still be wise, however, to

assume that only 2K of that stack is "yours’ to use if you plan to be calling any PalmOS APIs since they
may consume up to 2K stack themselves.

A third register you should know about is A5, the application data pointer (there’s probably a precise
official term but I don’t know it so this is what I call it). When a Pilot application is launched by the OS,
its startup code (the first routine in the code resource) calls the PalmOS API SysAppStartup which
allocates space in Dynamic RAM for the application’s data, decompresses the application’s initialized
data into this space, then sets A5 to point to it before returning. From then on, all references to
application data are relative to A5 (the MetroWerks compiler makes sure this is the case).
Address-relative references can only be +/- 32K which tells us that a Pilot application can (conveniently)
have only 64K of application data. Of course, this doesn’t include dynamically allocated data,
code-relative data (e.g., static strings), resources, or other storage so this shouldn’t turn out to be much
of a pinch.

Hacking Pilot Hack

You want to hack Pilot Hack? Enter "h <address> <return>" where <address> is the value stored in the
PC register and a <return> is the slashing Graffiti stroke from upper-right to lower left. Don’t be
alarmed when you see the addresses on the left don’t include the first two digits of your address -- I
needed the screen space so something had to go. You’ll see a hex/ASCII dump of Pilot Hack’s code
(pretty boring, no easter eggs, sorry) followed by (if you scroll down far enough) resources (its icon, etc.
-- hard to recognize unless you know what you’re looking for) and its initialized data (some strings like
"registers", "Write a *?” for some help", etc). This is basically what a Pilot executable PRC file is: a
header and a collection of resources, one if which is code, one of which is initialized data (compressed),

and an arbitrary number of other resources for icons, menus, forms, strings, bitmaps, whatever.

Ok, so much for what the CPU registers are pointing at. What else is to be found in Pilot memory? From
here I’ll break memory contents into two categories: hardware stuff and software stuff. Hardware stuff is
things that are there because the "DragonBall" 68328 puts them there or requires them to be there, and
software stuff is data created by the folks at Palm, primarily stored in the 512K of ROM.

Hardware Stuff

First let’s get into the hardware stuff. Many wonderful things can be discovered by consulting the
MC68328 DragonBall ™ User’s Manual. Read this cover to digital cover and you will gain endless
insights on what your Pilot is capable of. Many of these capabilities are not exposed by the PalmOS so if

you want ’em you’ll have to be prepared to go direct. WARNING: one of the primary purposes of the
PalmOS (and most operating systems) is to isolate you from the specifics of the hardware. A Pilot

application that writes exclusively to the PalmOS APIs has a good chance of being fully portable to
other platforms running the PalmOS (e.g., the Emulator running on the Mac, new hardware devices).
Writing directly to the hardware is like playing with fire -- you might get burned as USRobotics and

their licensees release new hardware, operating system upgrades, etc. Plus, since the multitasking
PalmOS manages and uses much of the hardware you may be interested in playing with there’s a good
chance conflicts will arise with unexpected consequences. On the other hand, fire is pretty cool and so
are some of the nifty DragonBall capabilities the PalmOS doesn’t provide access to (yet).

Starting at address $fffff000 you can find the 68328 registers. These are not the CPU registers but a
block of registers (~130 total) that control hardware functions like interrupts, parallel I/O (hey, I don’t ser
a parallel port on my Pilot!), audio, timers, serial I/O, the LCD display, and the Real Time Clock. What
these registers are do are beyond the scope of this document (and in many cases beyond the scope of my
knowledge!) but I'll call out a couple here to give you an idea of what can be found.

Screen Starting Address Register

Early in my hacking of the Pilot I didn’t know what any of the APIs were or how to call them but I
needed to get some kind of feedback from my test programs as they executed. Text output, serial output,
even beeping are all done through APIs I had no clue about. Scrounging through the 68328 User’s
Manual I found a register called "LSSA", "Screen Starting Address Register”. Hmm... very interesting!
Its address is (base) $ffff000 + $a00. You can use Pilot Hack to examine this register ("h fffffa00"). I
find the value $000063b0 on my Pilot but it may be different on yours. The Pilot’s LCD gets its display
data directly from this address. Write a byte at $63b0 and it shows up at the upper-left corner of your
display. Use Pilot Hack to view screen memory ("h 63b0" or whatever is right for your Pilot) and you’ll
see (in hex) the values that make up the display, 20 (decimal) bytes per scan line. Since the first scan
line of Pilot Hack’s display is blank, the first 20 bytes of the dump are zero. Then $80 (the top-left pixel
of the "h’), $46 (part of the *6” and ’3”), and so on.

I wrote debugging output directly to the screen until I figured out enough to be able to call the
WinDrawChars API ("function Foo returns 17" sure beats "..."). Pilot Hack still reads and writes
video memory directly to scroll the screen when in event trace mode. To check this out, enter *e’ to turn
event tracing on and drag the pen around on the screen. Enter e’ again to toggle tracing off. At the time
I'didn’t know about the API WinScrollRectangle but if I were writing Pilot Hack today I'd use
WinScrollRectangle for scrolling because it would be safer, more portable, keep my program smaller,
and possibly even be faster (if written in assembler or Palm’s compiler optimizes better than mine).

I'haven’t tried this but presumably one could scroll the screen through memory simply by changing the
screen starting address. Combined with the other LCD registers for panning this could be a great
speedup for games that scroll the screen a lot. Someone should write a GameBoy Emulator for Pilot.

Real Time Clock

This one is kind of fun because it is always changing. Enter "h fffffb00" (be sure to turn off event tracing
first, if you haven’t already) and the first four hex bytes are the time your Pilot thinks it is in hours (first
byte), minutes (second byte), and seconds (third and fourth byte). If you enter "h <return>" you’ll force
arefresh at the current address and you can see the second and possibly the minute value has
incremented. Nice to know that low-level hardware is taking care of this rather than software that can
easily get screwed up, say by an interrupt, and lose track of time.

Many of the other 68328 registers look very interesting. Go figure them out and YOU can write the next
hacking tutorial.

Software Stuff

On the border between hardware and software are the 68328’s Exception Vectors. When an exception of
any kind of occurs (e.g., divide by zero, misaligned memory access, reset, interrupt, TRAP) the CPU

looks up the appropriate vector in the table starting at memory address $0 and jumps to that vector to
handle the exception. When the PalmOS initializes it sets these vectors to point at its handlers for the

various exceptions. Sometimes it can be useful to know where these handlers are -- just look them up in
the vector table.

TRAPs

The vectors that interested me the most were the TRAP vectors. By disassembling the game Puzzle, 1
could tell that it accessed operating services by executing a TRAP #15 instruction followed by (what I
call) an API code that indicates which APT to dispatch to. The Macintosh uses a similar technique. I'm
not really a fan of this approach because it introduces a fair amount of overhead on each API call while
the trap dispatcher grabs the API code, decodes it, and dispatches to it. The Amiga uses a lower
overhead approach which involves an array of API vectors at a known address and indirecting through
the vectors to call APIs. Oh well.

I found it difficult to get much of an idea what Puzzle (and other programs I was disassembling) was
doing because I didn’t know which APIs were being called as a result of their TRAPs. The first step in
cracking this nut was to unravel the algorithm the trap dispatcher uses to map from an API code to the
API’s address. Question is, where is the trap dispatch routine located? Answer: one of the Exception
Vectors is used by the CPU to dispatch to the TRAP #15 handler. My 68000 reference manual tells me
this vector is at address $bc. Pilot Hack shows that the vector at $bc points to $10c03656 -- the trap 15
dispatcher!

Enter "h 10c03656" into Pilot Hack to dump the code for the trap 15 dispatcher. If you read the ASCII
dump down the right-hand side you’ll notice, toward the bottom, the string "TrapDispatcher” (well, the
’a’ and "p’ are truncated at the screen edge but you get the idea). More later on what this helpful string is
doing there. I typed the bytes (instructions) I found at this address into my PC and used a 68000
disassembler to reveal what the code is. The trap dispatcher is a simple routine that uses part of the API
code as an index into an API dispatch table full of vectors pointing to the actual APIs.

I 'added a command to Pilot Hack to perform this API code-to-address translation upon request. Enter "t
a000" (or just the "t 0" shorthand) to go to the address of the first API (MemlInit).

Function Names

Disassembly of anything, especially something large and complex like the Pilot 512K ROM, can be
quite challenging and time consuming without at least some sort of guide posts to give you a clue what
the code you’re disassembling is doing. The gods granted a great gift to hackers when they created the
Pilot and it comes in the form of function names. To my amazement when I first started poking around
in PRC files I discovered that every function in a Pilot app is followed by its (length preceeded) name in
ASCII! Just run a program like strings.exe on Giraffe.prc or Puzzle.prc and you will see strings like

"__ Startup__", "InitGameBoard", "DrawPiece", etc. Further, many of the programs have compiled in
Assert-type strings like "Error launching application”, "didn’t find empty square position”, "pos out of
bounds".

I have two reactions to this. My first one is "yay! this makes disassembly a piece of cake!" but my
second one is "bummer! all these symbols and asserts are wasting my precious Pilot RAM!". Normally
we only see this kind of stuff in DEBUG versions of programs. Are all the released Pilot apps DEBUG

versions? Are all software developers for Pilot insane? I don’t really have the answer to this but I'm
hoping Pilot developers will wake up to the kind of code they’re generating and start building more
efficient programs for their final releases. You may note that Pilot Hack does NOT have any bogus
symbols, asserts, or anything of the kind. Sorry if this makes hacking harder but I'm finding my 128K
Pilot squeezed enough as it is.

Do the ROMs also have these function names? Take a look. First toggle Pilot Hack into string dump
mode ("s <return>"). Now enter "t alf6". What do you see a few lines down the screen?
"WinCreateWindow"!!! So, the ROMs have these symbols too. I don’t care as much about wasted ROM
space as I do RAM space but this still seems strange (albeit handy for hackers). Perhaps there is a Pilot
debugging tool or something that can make use of these function names. Let me know if you have the
answer.

Browsing For Strings

With Pilot Hack in string dump mode you can quickly scan through memory for points of interest. To
start scanning at the base of the 512K ROM enter "s 10000000". Then just page down until you hit the
end or get bored out of your skull, whichever happens first. In addition to the names of all the PalmOS
APIs you can find many internal, private routines that don’t have TRAP entrypoints. Knowledge of
these can be valuable. Some other strings I found amusing:

10c2207c "Hackers Rule!!!!" —- I'm not making this up! Totally excellent!
10c4a9e6 "AMX 68000 Kernel ... Copyright (c) 1994-1995 KADAK Products Ltd."
10c601ldb "EggOfInfiniteWisdom" -- what is this?

10c612c8 The credit strings -- "Brought to you by:", etc.

Looks like USRobotics licensed their operating system kernel from another company "KADAK
Products Ltd.". You can find them on the Web along with more information about their kernel (sorry, no
link handy).

Events

To write Pilot Hack I needed to be able to handle various events like Graffiti handwriting events, button
presses, etc. I added an event trace facility to Pilot Hack to view these events and their arguments. Enter
"e" (no <return> needed) to turn on event tracing. As you press buttons or move the pen around on the
display Pilot Hack will show you a dump of the event your action triggers. Each value in the dump is
actually a word although the format of the dump might confuse you into thinking they’re bytes. The first
word of the dump is the event type ("eType") and you can see some obvious ones (1 = pen down, 2 =
pen up, 3 = pen move). The high byte of the second word is a Boolean that indicates whether the pen is
down. The third and fourth words are the pen’s x and y coordinates. The rest of the values are event
specific.

ROMDump

Using a tool like Pilot Hack to view the contents of the Pilot’s memory works well for certain jobs (e.g.,
decoding a trap) but unless you have Pilot versions of all the tools you want to use (yeah, right)
eventually you’re going to wish you had the Pilot ROMs where the rest of your tools are -- on the PC (or
Mac). It didn’t take me long to reach this point because my disassembler runs on the PC. So I want the
data from the Pilot ROMs on my PC. How do I get it there? One way would be to write a program to

send it over the serial line and capture it with a terminal program on the PC side but I didn’t yet have
any information on the serial APIs. I fumbled around for a bit until I noticed "Giraffe_High_Score.PRC"

in the Backup directory of my Pilot Desktop installation. Giraffe has a way to create a file that is

automatically transferred to the PC (backed up) when you hotsync. If I could figure out how they did it I
could have the Pilot ROMs ’backed up’ onto my PC.

Upon examination, Giraffe revealed that it creates a new resource database, sets a special flag on it that
indicates that the database should be backed up on hotsync, then creates a new resource in the database

into which it writes the high scores. So, all I had to do is add the same code to Pilot Hack but copy ROM
data rather than high scores. NOT! High scores are ~100 bytes long, Pilot ROMs are 512K long, my Pilo
has 128K of RAM to store the new database in. So, just write the ROMs out in several pieces and stitch
them back together on the other side. Given the amount of free memory on my Pilot I imagined each
piece would be ~64K in length, so 8 pieces for the whole thing. Not too bad. But when I wrote the code t
do this the Hotsync Manager crashed as it was trying to backup my file! Looks like some sort of size
limitation. I tried 48K, crash, 32K, crash, then 16K -- it works! 32 hotsyncs and another set of batteries
later I have all the data on my PC. Each piece has the PRC header on it so I wrote a little program to
strip it off and concatenate all the data into one file.

To do this yourself, use the (undocumented) "x” command in Pilot Hack. Start by setting the current
address to $10c00000 (the base address of the ROMs) "h 10c00000". Writing an "x" causes Pilot Hack
to write 16384 (decimal) bytes starting at the current address into a new resource database, then advance
the current address by 16384 bytes. At that point you press hotsync to backup the database. It will show
up in your Backup directory with the name "ROMDump.PRC". Rename it to "romdump.0". Go back to
your Pilot, write "x" again, hotsync again, rename the new file "romdump.1" and do it again 30 more
times. This is the true test of how committed you are to hacking the Pilot. Actually, the truly committed
would find a better way to do this and share it with the rest of us. With modern-day knowledge of the
serial API a better solution wouldn’t be difficult to write.

Here’s the program I used to stitch all those files together:

// MakeROM.cpp
// This program reads 32 16384-byte files with the name "romdump" and

// the extension ".n" where n varies from 0 to 31. The PRC header is

// stripped and the result is written as a single 512K file "Pilot.ROM"

#include <stdio.h>

unsigned char gab[16384];

void main()

{
FILE *pfilCombo = fopen("Pilot.ROM", "wb");

for (int i = 0; i < 32; i++) {

char szFilename[255];
sprintf (szFilename, "romdump.%d", i);

FILE *pfil = fopen(szFilename, "rb");

fseek(pfil, Ox5a, SEEK_SET);

fread(gab, 16384, 1, pfil);

fwrite(gab, 16384, 1, pfilCombo) ;

fclose(pfil) ;

fclose (pfilCombo) ;

}

Conclusion

So now you know your way around the Pilot, have seen a few of the sights, and can start exploring on
your own. What will you find? What will you do with what you learn? I’d love to hear about it.

Back to Pilot Software Development

Printed by J Ja Adam Hart

Jun 07, 00 15:24 manual.txt Page 1/10 Jun 07, 00 15:24 manual.txt Page 2/10
About - Download - History - Manual - Contributors

PilRC v2.5b4 / PilRCUI
User Manual

Aaron Ardiri (aaron@ardiri.com)
6 June 2000

Check the PilRC Home Page for the latest version.

Description

PilRC A resource compiler for the Palm Computing Platform
PilRCUI A form previewer. It launches a window which previews a close

approximation of forms as they would appear on the Palm.
Clicking in the content window of PilRCUI will cause it to
reload the current script.

NOT UPDATED - any GUI programmers want to help?

Table 0f Contents

Usage
Understanding the Manual
Resource Language Reference

International Support
Known Bugs
Further Reading

Usage

pilrc [-L LANGUAGE] [-I INCLUDE PATH] [-R RESFILE] [-q] file.rcp [output pa
th]

pilrcui [-L LANGUAGE] file.rcp

-L LANGUAGE Generate resource files for target language,
LANGUAGE.
Search INCLUDE PATH when looking for include or
bitmap files.
NOTE: multiple paths be repeating the -I option.
Output a .res file specifying all the resources
emitted by PilRC.

Output a .h file containing auto-generated resource
item IDs for resource items that were defined
without an ID previously.
NOTE: If -H is not specified then undefined IDs are
considered errors.

-q Less noisy output, for you minimalists.
-Fh Use Hebrew font widths for AUTO width calculations.
-Fj Use Japanese font widths for AUTO width

calculations.
-F5 Use Chinese (Big5) font widhts for AUTO width

calcuations.
-Fg Use Chinese (GB) font widhts for AUTO width

calcuations.
Use Korean font widhts for AUTO width calcuations
(Hanme font)

-Fkt Use Korean font widhts for AUTO width calcuations
(Hantip font)
Input file describing the resources to be emitted.
Each resource is written as a separate file in the
output path directory. The output filename is
constructed by appending the hexcode resource ID to
the four character resource type.
Directory where .bin files should be generated.

-I INCLUDE PATH

-R RESFILE

-H INCFILE

—Fkm

file.rcp

output path

Example:

pilrc myprogram.rcp

pilrc -I c:\resources -L FRENCH myprogram.rcp
pilrc -I c:\resources -L BIG5 -F5 -R myprogram.res myprogram.rcp c:\output

Understanding the Manual

Syntax

Items in all CAPS appear as literals in the file.
Items enclosed in "<" and ">" are required fields.
Items enclosed in "[" and "]" are optional fields.

Each field’s required type is indicated by a suffix after the field
name (see below for types).

Types

Cit identifier
example: kFoo

.c character
(may contain normal C style character escapes)
example: "O"

.8 string
(may contain normal C style character escapes)
example: "Click Me"

.ss multi line string
PilRC will concatenate strings on seperate lines
example: "Now is the time for all good " \

"men to come and aid of their country"
.n number

defined constant or wpanwm arithmetic expression. Valid
operators are Bz and "/". Precendence is left to
right, unless changed iwa: the use of parenthesis.
NOTE: Math calculations are integer based.
example: 23

12+43+1
12*(2+3)
' PALM'

.p position co-ordinate
may be a number, expression or one of the following keywords.

AUTO Automatic width or height.
Value is computed based on the text in
the item.

CENTER Centers the item either horizontally or
vertically.

CENTER@<coord.n> Centers the item at the co-ordinate
following.

RIGHT@<coord.n> Aligns the item at the right
co-ordinate following.

BOTTOM@<coord.n> Aligns the item at the bottom
co-ordinate following.

PREVLEFT Previous items left co-ordinate.
PREVRIGHT Previous items right co-ordinate.
PREVTOP Previous items top co-ordinate.
PREVBOTTOM Previous items bottom co-ordinate.
PREVWIDTH Previous items width.
PREVHEIGHT Previous items height.

example: PREVRIGHT+2
CENTER@80/2

NOTE: AUTO and CENTER are not valid in arithmetic expressions.

Comments

Single line comments begin with "//
Block comments exist between the "/*" and "*/" tokens.

NOTE: "//" comments within the definition of objects are treated as
errors.

Include Files

Wednesday June 07, 2000 manual.txt 1/5

Printed by v ua Adam Hart

}

[FRAME] [NOFRAME]

[MODAL]

[USABLE]

BEGIN

<OBJECTS>

END

TITLE

BUTTON

PUSHBUTTON

symbols as can PilRC.

Resource Language Reference

[HELPID <HelpId.n>]
[DEFAULTBTNID <BtnId.n>]
[MENUID <MenuId.n>]

Jun 07, 00 15:24 manual.txt Page 3/10 Jun 07, 00 15:24 manual.txt Page 4/10
[USABLE] [NONUSABLE] [DISABLED] [LEFTANCHOR]

The .rcp file may contain #include directives. [RIGHTANCHOR]

This allows a programmer to have one header file for their project [FONT <FontId>] [GROUP <GroupId.n>]

containing pre-defined resource IDs. Source code can reference the CHECKBOX <Label.s> ID <Id.n> AT (<Left.p> <Top.p>

PilRC understands three include file formats.

.h #define <Symbol.i><Value.n>

.inc <Symbol.i> equ <Value.n>

.java, .jav package <PackageName>

public class <ClassName> {
public static final short <Symbol.i> =

<Value.n>;

Once defined, a symbol can be used in place of any number.

NOTE: #ifdef derivatives are ignored by PilRC.

The .rcp file may contain the following object definitions:

FORM Form Resource
MENU Form Menu Bar

ALERT Alert Dialog Resource

VERSION Version String

STRING String Resource

CATEGORIES Default Category Names

APPLICATIONICONNAME Application Icon Name
APPLICATION Application Creator Identification
ICcoN

ICONFAMILY Icon Bitmap Resource
SMALLICON

SMALLICONFAMILY Small Icon Bitmap Resource

BITMAP

BITMAPGREY

BITMAPGREY16 Bitmap Resource

BITMAPCOLOR

BITMAPFAMILY
TRAP HackMaster Trap Resource

FONT User Defined Font Resource
TRANSLATION Language String Translation Resource

FORM (tFRM)

FORM ID <FormResourceId.n> AT (<Left.p> <Top.p> <Width.p> <Height.p>)

[SAVEBEHIND] [NOSAVEBEHIND]

Where <OBJECTS> is one or more of:

<Title.s>
<Label.s> ID <Id.n> AT (<Left.p> <Top.p>

<width.p> <Height.p>)
[USABLE] [NONUSABLE] [DISABLED] [LEFTANCHOR]

[RIGHTANCHOR]

[FRAME] [NOFRAME] [BOLDFRAME] [FONT <FontId.n>]

<Label.s> ID <Id.n> AT (<Left.p> <Top.p>
<Width.p> <Height.p>)

<Width.p> <Height.p>)

[USABLE] [NONUSABLE] [DISABLED] [LEFTANCHOR]
[RIGHTANCHOR]
[FONT <FontId.n>] [GROUP <GroupId.n>] [CHECKED]

POPUPTRIGGER <Label.s> ID <Id.n> AT (<Left.p> <Top.p>
<Width.p> <Height.p>)
[USABLE] [NONUSABLE] [DISABLED] [LEFTANCHOR]
[RIGHTANCHOR]

[FONT <FontId.n>]

SELECTORTRIGGER <Label.s> ID <Id.n> AT (<Left.p> <Top.p>

<width.p> <Height.p>)
[USABLE] [NONUSABLE] [DISABLED] [LEFTANCHOR]
[RIGHTANCHOR]
[FONT <FontId.n>]

REPEATBUTTON <Label.s> ID <Id.n> AT (<Left.p> <Top.p>
<Width.p> <Height.p>)

[USABLE] [NONUSABLE] [DISABLED] [LEFTANCHOR]
[RIGHTANCHOR]

[FRAME] [NOFRAME] [BOLDFRAME] [FONT <FontId.n>]

LABEL <Label.s> ID <Id.n> AT (<Left.p> <Top.p>)
[USABLE] [NONUSABLE] [FONT <FontId.n>]

FIELD <Label.s> ID <Id.n> AT (<Left.p> <Top.p>

<Width.p> <Height.p>)

[USABLE] [NONUSABLE] [DISABLED] [LEFTALIGN]
[RIGHTALIGN]
[FONT <FontId.n>] [EDITABLE] [NONEDITABLE]
[UNDERLINED]
[SINGLELINE] [MULTIPLELINES] [DYNAMICSIZE]
[MAXCHARS <MaxChars.n>]
[AUTOSHIFT] [NUMERIC] [HASSCROLLBAR]

POPUPLIST <Label.s> ID <Id.n> AT (<Left.p> <Top.p>
<width.p> <Height.p>)
[USABLE] [NONUSABLE] [DISABLED] [VISIBLEITEMS
<NumVisItems.n>]

[FONT <FontId.n>]
LIST <Label.s> ID <Id.n> AT (<Left.p> <Top.p>

<Width.p> <Height.p>)

[USABLE] [NONUSABLE] [DISABLED] [VISIBLEITEMS
<NumVisItems.n>]
[FONT <FontId.n>]

FORMBITMAP —<berpetrgr—FD—<Etdrm~ AT (<Left.p> <Top.p>)

[BITMAP <BitmapId.n>] [USABLE] [NONUSABLE]

GADGET <Label.s> ID <Id.n> AT (<Left.p> <Top.p>

<Width.p> <Height.p>)
[USABLE] [NONUSABLE]

TABLE ~bebelwss ID <Id.n> AT (<Left.p> <Top.p>
<wWidth.p> <Height.p>)
[ROWS <NumRows.n>] [COLUMNS <NumCols.n>]

[COLUMNWIDTHS <CollWidth.n> ... <ColNWidth.n>]

SCROLLBAR <Label.s> ID <Id.n> AT (<Left.p> <Top.p>
<Width.p> <Height.p>)
[USABLE] [NONUSABLE] [VALUE <Value.n>] [MIN

<MinvValue.n>] fiM? S .m;@
[MAX <MaxValue.n>] [PAGESIZE <PageSize.n>]

GRAFITISTATEINDICATOR <Label.s> AT (<Left.p> <Top.p>)

Notes:

* ID <Id.n> can be replaced with AUTOID. PilRC will assign an identifier

for each control which specifies AUTOID. This is useful for controls

which you won’t refer to within the application (ie: LABEL's). Auto

ID’'s begin at at 9000 and increase sequentially.

* The bitmap referenced by the FORMBITMAP tag must appear as a seperate

resource in the rcp file via the BITMAP tag.

* MAXCHARS is required for FIELD tag to work properly.

Wednesday June 07, 2000 manual.txt 2/5

* Any translations defined in the must be declared before the FORM
definition using the TRANSLATION tag.

Example:

FORM ID 1 AT (2 2 156 156)
USABLE MODAL

HELPID 1

MENUID 1

BEGIN

TITLE "AlarmHack"
LABEL "Repeat Datebook alarm sound" AUTOID) AT (CENTER 16)

PUSHBUTTON "1" ID 2001 AT (20 PrevBottom+2 12) AUTO GROUP 1

PUSHBUTTON "2" ID 2002 AT (PrevRight+l PrevTop PrevWidth PrevHeight) GROUP 1

PUSHBUTTON "3" ID 2003 AT (PrevRight+l PrevTop PrevWidth PrevHeight) GROUP 1

LABEL "times. Ring again every" AUTOID AT (CENTER PrevBottom+2) FONT 0

PUSHBUTTON "never" ID 3000 AT (13 PrevBottom+2 32 12) GROUP 2

PUSHBUTTON "10 sec" ID 3001 AT (PrevRight+l PrevTop PrevWidth PrevHeight) GROU

P2
PUSHBUTTON "30 sec" ID 3002 AT (PrevRight+l PrevTop PrevWidth PrevHeight) GROU

P2
PUSHBUTTON "1 min" ID 3003 AT (PrevRight+l PrevTop PrevWidth PrevHeight) GROUP

LABEL "Alarm sound:" AUTOID AT (24 PrevBottom+4)

POPUPTRIGGER ID 5000 AT (PrevRight+4 PrevTop 62 AUTO) LEFTANCHOR
LIST "Standard" "Bleep" ID 6000 AT (PrevLeft PrevTop 52 1) VISIBLEITEMS 2 NONU

SABLE
POPUPLIST ID 5000 6000

BUTTON "Test" ID 1202 AT (CENTER 138 AUTO AUTO)
GRAFFITISTATEINDICATOR AT (100 100)

END

MENU (MBAR)

MENU ID <MenuResourceId.n>
BEGIN

<PULLDOWNS>

END

Where <PULLDOWNS> is one or more of:

PULLDOWN <PullDownTitle.s>

BEGIN
<MENUITEMS>

END

Where <MENUITEMS> is one or more of:

MENUITEM <Menultem.s> ID <MenultemId.n> [AccelChar.c]
MENUITEM SEPARATOR

Example:

MENU ID 100

BEGIN

PULLDOWN "File"
BEGIN

MENUITEM "Open..." ID 100 "

MENUITEM SEPARATOR

MENUITEM "Close. “ ID 101 "C"

Printed by . ua Adam Hart

Jun 07, 00 15:24 manual.txt Page 5/10 Jun 07, 00 15:24 manual.txt Page 6/10

* Any user defined fonts defined by FONT >= 128 and FONT <= 255 must be MENUITEM "Get Info..." ID 200

before above the FORM definition using the FONT tag. END

END

ALERT (tALT)

ALERT ID <AlertResrouceId.n>

[HELPID <HelpId.n>]
[DEFAULTBUTTON <ButtonIdx.n>]
[INFORMATION] [CONFIRMATION] [WARNING] [ERROR]

BEGIN

TITLE <Title.s>

MESSAGE <Message.ss>

BUTTONS <Button.s>

END

<Button.s>

Notes:

* The DEFAULTBUTTON tag can be used to specify the button number to

select if the user switches to another application without pressing any

button in the alert. The argument is the index of the button, where the

left-most button is at index '0’.

Example:

ALERT ID 1000
HELPID 100

DEFAULTBUTTON 1

CONFIRMATION

BEGIN

TITLE "AlarmHack"

MESSAGE "Continuing will cause you 7 years of bad luck\n" \

"Are you sure?"
BUTTONS "Ok" "Cancel"

END

VERSION (tVER)

VERSION ID <VersionResourcelId.n> <Version.s>

Example:

VERSION ID 1 "1.0 beta"

STRING (tSTR)

STRING ID <StringResourceId.n> <String.ss>

STRING ID <StringResourceId.n> FILE <StringFile.s>

Example:

STRING ID 100 "This is a very long string that shows escape characters \n"

"as well as continued .ss syntax strings"

STRING ID 101 FILE "string.txt"

CATEGORIES (tAIS)

CATEGORIES ID <CategoryResourceId.n> <Categoryl.s> <Category2.s>

Notes:

* The CATEGORIES tag can be used to specify the default category names

for the application.
This resource can then be passed to the "CategoryInitialize()" API

function function to create the category strings in the application

END info block.
PULLDOWN "Options"
BEGIN Example:

Wednesday June 07, 2000 manual.txt 3/5

APPLICATIONICONNAME (tAIN)

APPLICATIONICONNAME ID <AINResourceId.n> <ApplicationName.s>

Example:

APPLICATIONICONNAME ID 100 "AlarmHack"

APPLICATION (APPL)

APPLICATION ID <ApplResourceId.n> <APPL.s>

Notes:

* <APPL.s> must be 4 characters long.
* <APPL.s> represents the creator id for the

registered at http://www.palm.com/
application, which can be

Example:

APPLICATION ID 1 "PALM"

ICON (tAIB) " A\Ffi q
e

Sun Q)g

4bpp and 256 color) icon

ICON <IconFileName.s>
ICONFAMILY <BitmapFileName.s> * 4

[TRANSPARENT r g b]
[NOCOLORTABLE] [COLORTABLE]

[TRANSPARENTINDEX index]

Notes:

¥ The bitmap must be 32x32, 32x22 or 22x22 in dimension.
Compression is not available for ICONS.
A CAIB resource with ID 1000 is created.
ICON creates a monochrome icon resource.
ICONFAMILY creates a multibit (1bpp, 2bpp,
resources.

* The inclusion of the bitmap color table is not recommended as it slows
down system performance. PilRC implements a simple color table matching
algorithm to match the bitmaps colortable to the system palette.

B
t

Example:

ICON "myicon.bmp"
ICONFAMILY "iconlbpp.bmp"
ICONFAMILY "iconlbpp.bmp"

"icon2bpp.bmp" "icon4bpp.bmp" "icon8bpp.bmp"
"" "icon8bpp.bmp" TRANSPARENTINDEX 255

SMALLICON (tAIB)

SMALLICON <IconFileName.s>
SMALLICONFAMILY <BitmapFileName.s> * 4

[TRANSPARENT r g b]

[NOCOLORTABLE] [COLORTABLE]
[TRANSPARENTINDEX index]

Notes:

* The bitmap must be 15x9 in dimension.
* Compression is not available for ICONS.
* A tAIB resource with ID 1001 is created.

ICON creates a monochrome icon resource.
ICONFAMILY creates a multibit (1lbpp, 2bpp,
resources.

* The inclusion of the bitmap color table is not recommended as it slows
down system performance. PilRC implements a simple color table matching
algorithm to match the bitmaps colortable to the system palette.

* 4bpp and 256 color) icon

Example:

Printed by v .ua Adam Hart

Jun 07, 00 15:24 manual.txt Page 7/10 Jun 07, 00 15:24 manual.txt Page 8/10

SMALLICON "mysmicon.bmp"
CATEGORIES ID 100 "Unfiled" "Business" "Personal" SMALLICONFAMILY "smiclbpp.bmp" "smic2bpp.bmp" "smic4bpp.bmp" "smic8bpp.bmp"

SMALLICONFAMILY "smiclbpp.bmp" "" "smic8bpp.bmp" TRANSPARENTINDEX 255

* BITMAP creates a monochrome bitmap resource.
* BITMAPGREY creates a 2bpp (4 color grayscale) bitmap resource.
* BITMAPGREY16 creates a 4bpp (16 color grayscale) bitmap resource.
* BITMAPCOLOR creates a 256 color bitmap resource.
* BITMAPFAMILY creates a multibit (1bpp, 2bpp, 4bpp and 256 color)

resources.
* The inclusion of the bitmap color table is not recommended as it slows

down system performance. PilRC implements a simple color table matching
algorithm to match the bitmaps colortable to the system palette.

icon

Example:

BITMAP ID 1 "mybitmap.bmp" COMPRESS
BITMAPGREY iD 2 .bmp" COMPRESS
BITMAPGREY16 ID 3 .bmp" COMPRESS
BITMAPCOLOR ID 4 .bmp" COMPRESS COLORTABLE
BITMAPFAMILY ID 5 "bitmlbpp.bmp" "bitm2bpp.bmp" "bitmdbpp.bmp" "bitm8bpp.bm

p" COMPRESS
BITMAPFAMILY ID 6 "bitmlbpp.bmp" "" "" "bitm8bpp.bmp" COMPRESS
BITMAPFAMILY ID 7 "bitmlbpp.bmp" "" "* "bitm8bpp.bmp" COMPRESS TRANSPARENT

255 255 255
BITMAPFAMILY ID 8 "bitmlbpp.bmp" "" "" "bitm8bpp.bmp" COMPRESS TRANSPARENTI

NDEX 255

TRAP (TRAP)

TRAP ID <TrapId.n> <TrapNumber.n>

Notes:

* DaggerWare'’'s HackMaster required.
* <TrapIld.n> must be greater than 1000.

Example:

TRAP ID 1000 367

FONT (NFNT)

FONT ID <FontResourceld.n> FONTID <FontId.n> <FontFileName.s>

FONT file format

The file containing the font information is plain ASCII. To understand how
it works it is first necessary to understand how a font is arranged in
memory. A font consists of four main parts, a header, a bitmap image, a

(AN
5

BITMAP (Tbm (Tbmp) r_ QR\F %) D\c

BITMAP ID <BitmapResourceId.n> <BitmapFileName.s> |
[NOCOMPRESS] [COMPRESS] [FORCECOMPRESS] %fi\» Qm Ao*h

BITMAPGREY ID <BitmapResourceId.n> <BitmapFileName.s> I\

[NOCOMPRESS] [COMPRESS] [FORCECOMPRESS] : S.f\ 175\
BITMAPGREY16 ID <BitmapResourceId.n> <BitmapFileName.s> W J

[NOCOMPRESS] [COMPRESS] [FORCECOMPRESS] wh le | 253]1
BITMAPCOLOR ID <BitmapResourceId.n> <BitmapFileName.s>

[NOCOLORTABLE] [COLORTABLE]
[TRANSPARENT r g b] [TRANSPARENTINDEX index]
[NOCOMPRESS] [COMPRESS] [FORCECOMPRESS] Ao&\h\\ HW.O 4

BITMAPFAMILY ID <BitmapResourcelId.n> <BitmapFileName.s> * 4 F\,F tvmn
[NOCOLORTABLE] [COLORTABLE] @
[TRANSPARENT r g b] [TRANSPARENTINDEX index] A r\l
[NOCOMPRESS] [COMPRESS] [FORCECOMPRESS] /md 5 ES \flfi

Notes: C/P . f\ Kf

Wednesday June 07, 2000 manual.txt 4/5

Printed by . .ua Adam Hart

Jun 07, 00 15:24 manual.txt Page 9/10 Jun 07, 00 15:24 manual.txt Page 10/10
bitmap location table, and an offset/width table. The bitmap image and
location table are generated for you 100% automatically.

The ASCII file consists of two parts, the header and the font data (glyph
objects). A full font file is provided with the PilRC distribution.

The FONT header has the following fields:

fontType The purpose of this field is unknown.
The ROM fonts define this value to be 36864.

maxWidth Defined as "maximum character width".
If not set it is automatically set to the width of the
widest character.

kernMax Defined as "negative of maximum kern value".
The purpose of this field is unknown.

nDescent Defined as "negative of descent".
The purpose of this field is unknown, and is not used in
the ROM fonts.

fRectWidth Defined as "width of font rectangle".
If not set it is automatically set to the width of the
widest character.

fRectHeight Defined as "height of font rectangle".
If not set it is automatically set when the first glyph
is defined.
All characters must be exactly this height.

ascent The number of rows that make up the ascending part of the
glyphs.
Ascent plus descent equals fRectHeight. This value should
be set.

descent The number of rows that make up the descending part of
the glyphs.

Descent plus ascent equals fRectHeight. This value should
be set.

leading The purpose of this field is unknown.

Each glyph has a bitmap, offset, and a width associated with it. The width
can be overridden, however it is not recommended as it is set automatically.

Notes:

* FONT declarations must be defined before the font is used.
* <FontId.n> must be between 128 and 255.
* Custom FONT declarations can only be used on Palm Operating System 3.0

and later.
* Palm Operating System 2.0 and before

[source.rcp]

FONT ID 1000 FONTID 128 "font.txt"

[source.c]
void *fontl28;
fontl28=MemHandleLock (DmGetResource ('NFNT’, 1000));
UICurrentFontPtr = fontl28;

* Palm Operating System 3.0+

[source.rcp]
FONT ID 1000 FONTID 128 "font.txt"

[source.c]
FontPtr fontl28;
fontl28=MemHandleLock (DmGetResource ('NFNT’, 1000)
FntDefineFont (128, fontl128);

* FONT support in PilRC is not complete, and has been reverse engineered.

International Support

PilRC supports a limited form of international tokenization. It works

by substituting strings in the resource definitions with replacements
specified in a TRANSLATION section. Multiple translation blocks may be

specified in a resource script. The active language is specified with
the "-L" flag to PilRC.

Positioning of controls is a large problem if absolute values are used.

It is recommended you use AUTO, CENTER and PREVRIGHT et al when
defining the contents of your forms. Example:

pilrc -L FRENCH myscript.rcp res

TRANSLATION

TRANSLATION <Language.s>
BEGIN

<STRINGTRANSLATIONS>

END

Where <STRINGTRANSLATIONS> is one or more of:

<Original.s> = <Translated.ss>

Notes:

* Declare a short keyword for long strings, and define native and foriegn
translations for it.

Example:

TRANSLATION "FRENCH"
BEGIN

"Repeat Datebook alarm sound" = "Répétitions Alarme Agenda"
"Ring again every" = "Rappel tous les"

END

Known Bugs

* LIST

o DISABLED does not work.

o VISIBLEITEMS may be required for list objects to show properly.
* FIELD

o MAXCHARS required for field control to accept characters to work.

o NUMERIC doesn’t work in Palm Operating System prior to 3.0

o Using NOSAVEBEHIND on Palm Operating System prior to 3.0 may cause
errors.

o Developed based on reverse-engineering.
The complete operation of how Palm handles FONT manipulation is

unknown.

Further Reading

For Palm Computing Platform reference information, be sure to also
visit the following websites:

o http://www.palmos.com/
http://www.palm.com/devzone

Provided by Palm Computing.

o http://www.massena.com

A great source of low level Palm Computing Platform information.

Provided by David Massena.

o http://www.roadcoaders.com

Need some examples? This is a great resource to find plenty of
source code for applications written on the Palm Computing
Platform.

Wednesday June 07, 2000 manual.txt 5/5

The Pilot Record Database Format

This document is based on information derived from experiences with PalmOS 1.0.6,
PalmOS 2.0, CoPilot, POSE, the Macintosh simulator and other utilities that read or

create PDB files. Future versions of software may behave differently from what is
describe below.

The PDB File Format Basics
The Pilot Database (PDB) File format can be used to transfer files to the PalmPilot. It

is possible to install PDB files to create either resource or record databases through this
mechanism. This document only reviews the record database capabilities of the PDB
File Format.

The PDB file format is also used to store databases from the PalmPilot on the
Macintosh/PC. Pilot databases contain an attribute bit called the Backup Bit. Setting
this bit indicates that no custom conduit will be backing up the database and that the
database should be backed up during the HotSync process. If you create a database on
the PalmPilot and set the Backup Bit, you will find a copy of the database in PDB
format in the Backup directory on the computer with which the HotSync was
performed.

There is a direct correlation between what is described here, and the PalmPilot record

database format as described in Developing PalmOS 3.0 Applications. See Part III,
Chapter 1 for further details. Specifically, pages 37 to 41 of that document (pages 34
to 38 of the version for PalmOS 2.0) will give you an overview of the PalmPilot
database structure and help you understand the meaning of some of the record
attributes and database header fields.

No mnemonics are provided for named constants in this document. If you are using
"C" you may wish to review the header file DataMgr.h for public constants for bit
flags. Constants are shown using the "C" language convention for hexadecimal
numbers (e.g., 0x0A), followed by decimal values where they are not obvious.

Major Sections of the PDB File
The PDB file (from this point forward that term refers to the record database format
exclusively) is made up of the following sections: Header, Record List and Data. They
are each described in the following paragraphs.

The Header supplies the basics of the file format: file name (on the PalmPilot), various
time stamps, version numbers, file attributes, creator and type information, etc.

The Record List enumerates all the records of the file, their attributes and locations

within the PDB file.

The Data portion of the PDB file contains the actual AppInfoArea, SortInfoArea and
data records. The AppInfoArea and the SortInfoArea are application-specific areas that
are optional elements of the PDB file. A PDB file may contain neither, one or both of
these areas. The PDB file need not contain any records for HotSync to install the file,

however the unsupported FTP code that comes the Metrowerks development tools
does not support the installation of files with zero records. Current Palm-supported
tools that read PDB files include the Palm Install Tool (to install via HotSync), the

Macintosh-only Simulator (via interactive console commands), and the PalmOS

Emulator (POSE).

The Header

The header is made up of the following fields.

Field Bytes Type Notes

Name 32 Null-terminated

string
This is the name of the
database on the PalmPilot
device. It need not match the
name of the PDB file in the
environment in which it is
created.

File Attributes Numeric* 0x0002 Read-Only

0x0004 Dirty AppInfoArea

0x0008 Backup this database
(i.e. no conduit exists)

0x0010 (16 decimal) Okay to

install newer over existing
copy, if present on PalmPilot

0x0020 (32 decimal) Force the

PalmPilot to reset after this

database is installed

0x0040 (64 decimal) Don’t
allow copy of file to be beamed
to other Pilot.

Version Numeric* Defined by the application.

Creation Date Numeric* Expressed as the number of
seconds since January 1, 1904.

The database will not install

if this value is zero. (PalmOS

1.0.6)

Modification Date Numeric* Expressed as the number of
seconds since January 1, 1904.

The database will not install

if this value is zero. (PalmOS

1.0.6)

Last Backup Date Numeric* Expressed as the number of
seconds since January 1, 1904.

This can be left at zero and the
database will install.

Modification

Number

Numeric* Set to zero.

ApplnfoArea Numeric* The byte number in the PDB
file (counting from zero) at

which the AppInfoArea is
located. This must be the first
entry in the Data portion of the
PDB file. If this database does
not have an AppInfoArea, set
this value to zero. See Note A
below.

SortInfoArea Numeric The byte number in the PDB
file (counting from zero) at

which the SortInfoArea is
located. This must be placed
immediately after the
AppInfoArea, if one exists,
within the Data portion of the
PDB file. If this database does

not have a SortInfoArea, set

this value to zero. Do not use

this. See Note C below for
further details.

Database Type String Set this to the desired value.
Generally it should match the
Database Type used by the
corresponding application This
is 4 characters long and does
not have a terminating null.

Creator ID String Set this to the desired value.
Generally it should match the
Creator ID used by the
corresponding application. In

all cases, you should always
register your Creator ID before
using it. This is 4 characters
long and does not have a
terminating null.

Unique ID Seed 4 | Numeric* This is used to generate the
Unique ID number of
subsequent records. This
should be set to zero. See Note
B below.

NextRecordList ID 4 | Numeric* Set this to zero. The element is

used only in the in-memory
representation of a PDB file,

but exists in the external
version for consistency.

Number of Records 2 | Numeric* This contains the number of

records

*Please note that the PalmPilot’s processor is a member of the Motorola 68000 family.
The processor expect Numeric fields to be arranged with the Most Significant Byte
coming first as you move through the file. If you are creating your file on a processor
family that does not follow this byte ordering, notably Intel processors, pay attention or
you will not have the expected results.

Note A: Because of differences between the behavior of software provided on the
Macintosh and PC platforms, and bugs which are present, but different, between those

platforms, the following advice is given. If you are going to have an AppInfoArea,
the safest prospect, between the two platforms is to have an AppInfoArea of

exactly 512 bytes. If you need a larger area, it is recommended by Palm’s Developer
Support that you dedicate a record or resource to that purpose. Macintosh users will
experience problems if the AppInfoArea is longer than 512. For Windows-based users,
the AppInfoArea will be padded with garbage to be exactly 512 bytes, if it is shorter
than that. Windows users should not encounter problems when installing an
ApplnfoArea longer than 512 bytes.

Note B: Various statements have been made about the UniqueID Seed, but they do not

appear to be possible to verify. As of PalmOS 2, UniquelDs are not preserved through
the process of backing up and re-installing a database to the Pilot. Changes may come
about that will make this work in the expected way, but for now, if you want to count
on a known value to uniquely identify a record, the developer should assign that
number and store it within the data portion of the record. The UniqueID Seed
should be set to zero.

Note C: Backup and downloading of the SortInfoArea is not supported by PalmOS.
While it is possible to attach a piece of memory to the SortInfoArea pointer within the
PalmPilot, the PDB loading and PDB backup process that occurs when the Backup Bit
is set to do not support the SortInfoArea. The best solution is to dedicate a record or
resource to the storage of whatever information you might want to keep in the
SortInfoArea and avoid using the SortInfoArea.

The Record List

[T} non
The Record List is made up "n" structures, where "n" represents the number of records

in the PDB file. Each structure has the following format.

Field Bytes | Type Notes

Record Data 4 | Numeric* | The byte number in the PDB file (counting
Offset from zero) at which the record is located.

Record Attributes 1 | Numeric | 0x10 (16 decimal) Secret record bit.

0x20 (32 decimal) Record in use (busy bit).

0x40 (64 decimal) Dirty record bit.

0x80 (128, unsigned decimal) Delete record

on next HotSync.

The least significant four bits are used to
represent the category values.

UniquelD 3 | Numeric* | Set this to zero and do not try to
second-guess what PalmOS will do with this
value. See Note B above.

*See note after first table for Numeric field types.

Assembling the File
To create the PDB file, you must assemble the components in this order.

Area Description

Database Header | The complete header format, as described above.

Record List Must contain at least one entry.

Filler Upon transferring a database from the PalmPilot to the
desktop environment, the PDB file will have two bytes of
filler here. It does not appear to be necessary to insert these
two bytes here when creating a PDB file for installation on
the PalmPilot. However, if you read a PDB file created by
the backup conduit (setting the Backup Bit), you will find
that there are two bytes of data in this location.

Data Area It must be in this order: AppInfoArea (if present),
SortInfoArea (if present), and records, sequentially. The

order is important because each element’s size is computed
based on the location of the following element.

Advice
With each release of desktop or device software from Palm, the behavior of the

software changes slightly. In an attempt to keep this document up-to-date, please
advise the author of any discrepancies or inaccuracies you may observe. Write to
bobf@ilx.com or bobf@jhu.edu .

Bachmann Software

Palm Programming: The Authoritative Solution
Chapter 21: Using the Communications Libraries, Part 2: Ini

Note the following is an excerpt from the Macmillan/Sams Publishing book "Palm
Programming" by Bachmann Software. You can order the book, which includes the
Sfull article as well as a CD-ROM containing all the example code, from
Amazon.com

Introduction

In the last chapter, you learned how serial communications can further improve our
productivity by providing the opportunity to print and share all of the useful
information. Unfortunately, to make it all work, you have to carry along a multitude of
cables, wires, adapters, and power supplies. We live in an increasingly wireless world
and to maximize the usefulness of our Palm devices (and to send us off the scale in the
"cool" department), we need to "beam.". That’s right, Star Trek meets Silicon Valley!
With infrared communications at our command, we become truly portable (if not the
most advanced gadgeteer in the office, which is of course a prize in itself).

There are a few types of infrared (IR) communications available to the Palm user. The
specific needs and resources available for a particular application will dictate the
approach you take for IR communications on the Palm, although everyone’s first
desire of to have a deluxe universal remote control is not one of the options. To those
of you looking only for this summit of TV enjoyment, I implore you to read on! There
are many worthy applications available to the Palm: For instance, take a quick look at
your digital cell phone. Many new phones are equipped with built-in IR capability.
(Just don’t send us the phone bill!).

I continue the discussion of communications topics with the Infrared Library, Palm
OS’s implementation of the IrDA standard. IrDA (the Infrared Data Association,
http://www.irda.org) is the standards organization setting the direction of infrared
communications for devices and appliances. Major manufacturers and software houses
are members of IrDA today, and this effort will continue to grow in the years ahead.
Learning to program to the IrDA specification will put you in the fast lane for Palm OS
development. Where else would you want to be? I conclude this chapter by looking at

the included sample application, IrDemo. IrDemo provides a framework for writing
head-to-head, Palm-to-Palm games (err, I mean applications).

The Standard

The IrDA specifications call for two types of infrared communications, namely SIR
(Standard IR) and FIR (Fast IR). SIR effectively provides serial communications

replacing the copper wires found in your modem cable with light waves in the infrared
spectrum. The transmission speeds of SIR match those of traditional serial
communications in the 300[nd] - 115,000 bps range. Fast IR is capable of delivering
substantially higher transmission speeds. FIR is being used on some platforms to
implement local area networking connectivity because it is capable of throughput of up
to 4 Mbits per second. To put this in perspective, your normal Ethernet network is
capable of either 10 or 100 Mbits per second.

Like many communications specifications, the IrDA standard defines many protocol
layers that form the "IR stack." Each layer offers distinct services upon which
additional services are built. At the bottom of the stack is SIR/FIR, which is strictly
hardware, involving an IR device that emits light waves and a controller. The
controller takes the form of a UART or other chip (for FIR). Riding atop the physical
layer is the Infrared Link Access Protocol (I'LAP). This layer provides the actual data
path for IrDA communications. There is one I'(LAP "connection” per IR device. The
Infrared Link Management Protocol (IrLMP) handles one or more sessions over the
single I'LAP connection. Higher levels of the stack include: TinyTP, rCOMM,
IrLAN, IrLPT, and OBEX. Additional layers coming into play include protocols for IR
keyboards. This is a 10,000~ foot view of the stack. You are encouraged to visit the
IrDA’s Web site for more detailed information.

Not all of the IrDA standards are implemented by Palm OS., However, because the
required layers are supported in the IR Library, you can roll your own implementations
of the missing layers. The Palm’s Exchange Manager implements OBEX, but you will
need to develop the code to interact with another devices such as a printer using either
IrCOMM or IrLPT. The sample program demonstrates my own IrDemo
implementation.

Palm OS IR Capabilities

The first Palm OS release to support infrared communications was Palm OS 3.0.
Therefore, IR applications require the 3.0 SDK. The addition in Palm OS 3.0 of
primary concern is irlib.h (and the IR Library itself of course). irlib.h lays out all of the
data types needed for IR programming. The Palm device’s single UART chip provides
services for both serial and infrared communications. As I touched upon briefly in the
Chapter 20, "Using the Communications Libraries, Part 1: Serial Manager", it is
important to reiterate that the Palm III device’s sole UART controls both serial and IR
communications. This means that you cannot operate the IR port and the serial port
simultaneously. The mutual exclusivity between IR and serial communications also
has implications for the debugging environment. In short, you cannot use the
Metrowerks debugging environment to trace IR calls. In addition, POSE does not
currently emulate IR functionality. Included in the IrDemo application is an example
of debugging on the Palm, using a home-grown "printf" function.

IR Library Essentials

Before I jump right into the IR Library’s API, it is important to have a brief discussion
on the architecture of an IR application.

When your Palm application wants to communicate with another device, such as
another Palm device, a printer, or cell phone, etc., the first task is to "discover" the

other device. This is essentially the IR device looking around for other devices to talk
to. Once this process is complete, the application will have the address of the remote
device and can initiate a connection. Once you have a low- level connection (IrLAP) to
the other device, you need to look up the service you want to communicate with. The

Information Access Service (IAS) provides a database of information for the services
available for a particular device. When you have received the attribute information
from IAS, the application can establish a session with the appropriate service. Let’s
look at a real world analogy.

Suppose you need an electrician. You open up the Yellow Pages and look under
Electricians. This is akin to the IR device performing discovery. It is looking for
devices that "speak IR." Once you are on the correct page of the phone book, you
review each of the advertisements, selecting the most appealing electrician service and
record the phone number. In the same way, a discovery process on the Palm might find
many devices, but needs to select one with which to communicate. This will yield an
address to use in the connection process.

Okay, so you call the electrician’s office and ask for someone with the expertise to
install a refrigerator. On the Palm, you initiate an IAS query looking for, say, "I'LPT"
for printing services.

The receptionist replies, "Dial extension 123." On the Palm, the IAS query responds
with the LSAP selector where IrLPT is found.

So you call extension 123 and speak with the electrician who can help you install the
refrigerator. The Palm IR application connects to the IrLPT service and can now print!

The IR Library relies upon two callback functions for event notification. I must
provide both of the callback functions in the application, because there is no default
event handler provided by Palm OS. The first callback function, named "IrHandler" in
IrDemo, shoulders the majority of the workload in the application. IrHandler receives
all notifications for IrStack- related events, such as I'LAP connect and disconnect,

IrLMP session requests and confirmation, data receipt, discovery completion, and so
on. This function is installed during the IrBind function call. The other callback
function I have named "IASHandler". IASHandler receives notification when IAS
queries have completed.

Because callback events can occur at any time in the Palm application, it is important
to avoid the use of alerts or other potentially time-consuming functions. In an effort to
provide detailed information during the execution and avoid these problems, IrDemo
uses a simple printf function for displaying information. The messages appear in a
"window" showing five lines toward the bottom of the Palm’s display area.

Without further delay, let’s work our way through the IR functions and build our
application!

Implementing Infrared Connectivity in a Palm Application

Because it is a shared library (see Chapter 19, "Shared Libraries: Extending the Palm
0OS"), to use the IR Library, you must first load it with the following code: Err €; // For

error result

Ulnt refNum; // "Handle’ to library

e = SysLibFind(irLibName, &refNum);

(Note: - irLibName is defined in irlib.h.)

After this call, e should contain the value 0, or an error otherwise.

Once the library is loaded, you must open it for the application’s use:

e = IrOpen(refNum, irOpenOptSpeed9600);

irOpenOptSpeed9600 is defined in irlib.h along with other constants indicating the

initial speed for the port. This is similar to the way in which the Serial Manager works,
as described in Chapter 20, "Using the Communications Libraries, Part 1: Serial
Manager."

Again, this call should return 0, or an error otherwise.

Once the IrOpen call has been made successfully by an application, it must call IrClose
prior to application termination. Due to the way in which Palm applications ’terminate’
when the “task’ is switched, it is important to detect the application switching to clean
up properly.

Now that the library is opened by the application, you need to initialize it with a
function named IrBind. Binding will associate an IrConnect structure, defined in the
application along with a callback function that the IR Library uses to notify you of
completion of certain IR-related events:

e = IrBind(refNum, &irCon, IrHandler);

See irlib.h for a description of the irCon parameter. It is actually a structure of type
IrConnect.

IrBind must return 0, or an error otherwise.

Now that you have bound an IrConnect structure and the IrHandler, you go on to
advising the IrStack who we you are. This is done with the IrSetDevicelnfo function.
The return value of this function is not the generic Palm OS error type, Err, but rather

the type IrStatus. See irlib.h for a description of this type and the possible values it can
hold:

IrStatus irStat;

static Byte OurDevicelnfo[] = {IR_HINT_PDA, IR_CHAR_ASCIL'P’'A’,’L’,
"M, DE, M0}

if (IrSetDevicelnfo(refNum, OurDeviceInfo ,OurDevicelnfoLen) !=

IR_STATUS_SUCCESS) {

IrUnbind(refNum, &IrCon);

IrClose(refNum);

printf("IrSetDevicelnfo Failed!");

return;

}

OurDevicelnfo is a byte array, that cannot exceed the size defined in irlib.h of
IR_MAX_DEVICE_INFO. This array contains "hint" bytes. The hint bytes are bit
masks to indicate the type of device we ’are’ in this application. If there is more than
one hint byte to be used, you can use the IR_HINT_EXT, which indicates that the

device info contains an additional byte of hint information. Here is an example:

/I Device info for standard irComm device

static Byte irCommDevicelnfo[] = { IR?HINT_PRINTERlIR_HINT;EXT,

IR_HINT_IRCOMM, IR_CHAR_ASCIL, 'I",’r’,)C’,’O’ M’ M’ };

This function should result in IR_STATUS_SUCCESS.

At this point, you have successfully loaded and opened the IR Library. You have

bound it for use and told the IrStack who you are. If you want to advertise a service for
other devices to connect to, you make use of the IAS database. This is a ’generic’

database. Each IrDA- compliant device maintains this repository to hold information
regarding which services the device offers. This is similar to the way TCP service
maps names to ports (ie such as FTP -> 21 or WWW -> 80):

static Byte OurDeviceName[] = { IAS_ATTRIB_USER_STRING, IR_CHAR_ASCII,
8P, AL M, D E M, 0’}

static Byte OurDeviceNameLen = sizeof(OurDeviceName);

/* "Standard" class name for our demo is IrDemo with attribute of
IrDA:Ir'LMP:LsapSel */

static Byte irdemoQuery(] = { 6,’I’,’r’,;’D’,’E’,’"M",’O’,

18,

DA T L VD R

RN sl pt S e

const irdemoQuerySize = sizeof(irdemoQuery);

/* Result for IrDemo */

Byte irdemoResult[] = {

0x01, /* Type for Integer is 1 */

0x00,0x00,0x00,0x02 /* Assumed Lsap */

b

/* IrDemo attribute */

const IrlasAttribute irdemoAttribs = {

(BytePtr) "IrDA:IrLMP:LsapSel”,18,

(BytePtr)irdemoResult, sizeof(irdemoResult) };

static IrlasObject irdemoObject ={

(BytePtr)"IrDemo",6,1,

(IrlasAttribute*)&irdemoAttribs } ;

IrTAS_SetDeviceName(refNum, OurDeviceName,OurDeviceNameLen);

IrTAS_Add(refNum, &irdemoObject);

To connect to another device, you must find the device’s address. To obtain this, you

use the function IrDiscoverReq:

// Initiate a discovery and IrLAP connection

while (++1Counter <= ITimeout)

{

irStat = IrDiscoverReq(refNum, &IrCon);

switch (irStat)

{

case IR_STATUS_MEDIA_BUSY:

printf("Media Busy");

continue;

case IR_STATUS_FAILED:

printf("Failed in Discovery");

IrUnbind(refNum, &IrCon);

IrClose(refNum);

FrmCustomAlert(ErrorAlert,

"Failed to Discover. Ending Application","","");

MemSet(&evtExit, sizeof(EventType), 0);

evtExit.eType = appStopEvent;

EvtAddEventToQueue(&evtExit);

return;

case IR_STATUS_PENDING:

/I This is the one we want!

/I At this point we need to wait for the discovery process to

// complete ...

printf("Discovery Pending!!!");

return;

}

} // while

irStat may can come back with one of the following values:

IR_STATUS_MEDIA_BUSY: - indicates that the media is busy and we you should

retry the function.

IR_STATUS_FAILED: - indicates an error in the stack.

IR_STATUS_PENDING: - this is the one you want;, it indicates a successful start of
the discovery process.

Because it is possible for the IrDiscoverReq function to come back busy a few times
and then become "pending’, you wrap this call into a while loop with a timeout on the
iterations. This gives the application a healthy chance of finding another device, able to
withstand a couple of media busy responses without a disappointing failure in the
connection process.

The completion of the discovery process is notified via the callback function registered
during the IrBind call, namely IrHandler.

Once discovery has completed successfully, you will have the address for a remote

device. Actually, you might have many devices in range, and you will need to sift
through them all to select the one you want. You can sort through any available IR
devices by examining the hint bytes and "nickname" that is returned by the discovery
process. Once you have selected a device, you want to establish an IrLAP connection.
You do this with the function IrConnectIrLap:

/I Check for a valid device

if (pCBParms->deviceList->nltems == 0)

{

printf("No Devices Found!");

return;

}

/I At least one device has been found, we will

/I assume that the first (and probably only!) device

// found is the one we want.

g_irDevice = pCBParms->deviceList->dev[0].hDevice;

printf("Found %d.%d.%d.%d",g_irDevice.u8[0],g_irDevice.u8[1],

g_irDevice.u8[2],g_irDevice.u8[3]);

/I Let’s make an I'LAP connection to this address

while (++ICounter <= ITimeout)

{

irStat = IrConnectIrLap(refNum, g_irDevice);

switch (irStat)

{

case IR_STATUS_MEDIA_BUSY:

printf("IrLap Media Busy");

continue;

case IR_STATUS_FAILED:

printf("Failed in IrConnectIrLap");

return;

case IR_STATUS_PENDING:

/I This is the one we want!

/I At this point we need to wait for the connect process to

// complete ...

printf("Connect Lap Pending!!!");

return;

}

} /1 while

You are looking for Ir'LAP to return IR_STATUS_PENDING.

As in the discovery process, you wrap this IrConnectIrLap function in a while loop
with a timeout to give it a chance to connect without a single
IR_STATUS_MEDIA_BUSY pushing you off course.

When the IrLAP connection has been established, you next want to find out what

services the remote device is offering. Here is where the IAS database comes in. You
will query the device for a specific service that you are interested in. You will actually
execute two IAS queries. The first will demonstrate obtaining the device name. The
device name is a required field to be maintained in the IAS, as defined by IrDA.:.

// Initiate query for remote service we are interested in

/I This first query will provide the remote device name

/I as defined by the device’s IAS

IrTAS_StartResult(&clientQuery);

clientQuery.result = queryResult;

clientQuery.resultBufSize = sizeof(queryResult);

clientQuery.callBack = IASHandler;

clientQuery.queryBuf = irGetQuery;

clientQuery.queryLen = irGetQuerySize;

IrTAS_Query(refNum, &clientQuery);

/I Now that we have the device we want

/I we need to determine how to connect to it, ie. what lsap?

IrTAS_StartResult(&clientQuery);

clientQuery.result = queryResult;

clientQuery.resultBufSize = sizeof(queryResult);

clientQuery.callBack = IASHandler;

clientQuery.queryBuf = irdemoQuery;

clientQuery.queryLen = irdemoQuerySize;

IrTAS_Query(refNum, &clientQuery);

The last area to look at is the IASHandler callback function. This function is invoked
when the results of an IAS query are ready. Because the IAS database stores
information in an "unstructured" format, each attribute must be stored with a data type
identifier. When processing the results of an IAS query, you first look at the data type,
and then process the value:

switch (IrTAS_GetType(&clientQuery))

{

case IAS_ATTRIB_MISSING:

printf("Attribute is Missing?!");

break;

case IAS_ATTRIB_INTEGER:

printf("Get Integer Value");

IrCon.rLsap = IrTAS_GetIntLsap(&clientQuery);

irPack.len = 0;

/I We have the address for the service we want to connect to

// Let’s establish the LMP session

The connection process "propels” itself along via the callbacks. To review, to connect
to a device via the IR Library, the steps are:

1. Load the IR Library using SysLibFind()

2. Open the IR port using IrOpen()

3. Initialize the port using IrBind()

4. Use IrDiscoveryReq() to obtain the device?s address

5. From within the IrHandler callback function, when discovery finishes, we you
request the IrLapConnection() with IrLapConnectReq().

6. When this completes, we you query the IAS for the service we you want.

7. When the IAS is complete and IASHandler is called, we you make a request for an
LMP connection with IrConnectReq().

8. When this is complete (signalled signaled, of course, by the IrHandler callback), we
you have an up- and- running connection to the other device!

IrDemo: Building a Palm OS IR Application

The IrDemo application is designed to be informative and provide you with a
launching pad for your own IR projects. You should understand that it is not intended
to be a production-ready application. In a number of areas I have left comments for
"to- do’s", such as handling the case when a connection request is unsuccessful.

All of the code is on the CD-ROM that accompanies this book. To build the
application, be sure to compile with the Palm OS 3.0 SDK. To run the application, you
will need two Palm devices. The interface has four buttons: Start, Connect, Send, and

Finish.

Place the devices head to head so the IR ports can "see" one another. Select Start on
both devices. You should see some status information scrolling at the bottom of the
display. On one (and only one!) device, select the Connect button. The applications
will display status information, indicating the connection activities. Note that the
messages will differ on each device. At this point, you will see connection
confirmation on both devices, and you may can select the Send button on either device.
The data will be received and displayed. When complete, select the Finish button on
each device, and the application will terminate.

An interesting thing to try is to move the devices apart and note the messages that are
displayed. Move the devices back together (ie, so IR transmission can continue), and
notice the display. Move the devices during the discovery process, etc.

The IrDemo application is designed to demonstrate the fundamentals of IrDA. I hope
this will help you develop your own applications, whatever they are used for. Our own
Bachmann Print Manager product uses infrared connectivity to enable graphics and
text printing on popular laser printers. With so many devices supporting the IrDA

standard, there is certainly a world of possibilities for creating special capabilities on
the Palm device.

For further reading, you can check out the following resources:
-Infrared Data Association (IrDA): http://www.irda.org
-Linux IR Project: - http://www.cs.uit.no/linux-irda/
Chapter 9 of the Palm OS 3.0 documentation

Call Bachmann Software and Services at (973) 729-8628 or e-mail us today!

Copyright © 1999 Bachmann Software and Services, LLC. All rights reserved.

The IrDA Platform
Stuart Williams and lain Millar

HP Laboratories, Bristol

Abstract

For almost the past two years the Infrared Data Association has been working to establish an open standard for short range directed

Infrared data communications. We are now at a time where the technologies developed within this forum are finding their way into the
marketplace. Whilst there has been a high level of multivendor participation and collaboration in the establishing the base level IrDA
standards to date very little overview material has been published. This paper provides an introduction to the IrDA’s mission and to
the technologies that its members have developed. What the IrDA has specified to date is very much a platform. As a platform it
meets the key goals of low-cost and multivendor interoperability. It also provides a rich set of ease of use features that will enable
multiple applications to concurrently share access to an infrared connection between a pair of devices.

1. Introduction

Since its formation in June 1993 the Infrared Data Association
(IrDA) has been working to establish an open standard for short
range infrared data communications. At the time of its formation
there were a number of vertical, non-interoperable infrared

communications technologies. Today IrDA is a strong contender
for anyone considering adding infrared data communications to
their product. Indeed, whilst supporting their own legacies,
vendors who have been offering infrared solutions for years are

embarked on the transition to an IrDA based solution.

The key goals for the IrDA are interoperability, low cost, and ease
of use. Interoperability is addressed through the creation of an
open standard with wide spread, multi-vendor support'.

Low cost refers to the marginal cost of adding an IrDA interface
to products in high volume manufacture. For the most part the
cost of adding the digital logic required to provide an IrDA
interface is regarded as negligible. The few thousand gates that it

takes to implement even the recent higher speed proposals are

regarded as coming for free in an environment where ASIC
functionality is limited largely by pin-count rather than gate
utilisation. This leaves the marginal cost of adding the
optoelectronic transceiver which is estimated as $2-$3 and is set
to fall further in future with the availability of transceiver modules

from optoelectronic suppliers.

Lastly there is ease of use. The IrDA usage model is for short
range directed communication link that supports ad-hoc point-
and-shoot and place-and-play communications. The nominal
operating envelope is a 1m cone with 15 degree half-angles. One

of the IrDA frequently asked questions over the past year has
been “How do | aim my printer?” The point being that it is all very
well to be able to point a PDA at a printer, but it is not really

tenable for a printer to sprout legs and point back. Whilst the
term “directed” is used to describe an IrDA system, it would be

unfair to suggest that it requires highly accurate alignment.
Indeed the physical specification allows for more omni-directional

behaviour at ranges of less than 1m.

The IrDA system design, which is the focus of the bulk of this
paper, is also a significant factor in establishing IrDA platforms

as easy to use. Users of conventional communications

applications have had to deal with having the correct cables to

connect a computer or terminal to a peripheral such as a printer
ora modem. They have had to do battle with baud rates, and bits

per character and parity. They have also had the responsibility of
ensuring that the correct software was loaded at opposite ends of
the communications channel.

Whilst the IrDA aims to replace the serial cable for ad-hoc

peripheral connection, it also aims to add ease of use features
that enable applications to identify peer entities with which they

t Including several major manufacturers of computers, PDAs,

printers, modem and mobile phones; computer software

companies; PTTs and component vendors

can communicate. Thus a printing subsystem; a file sharing
client; a calendar management application; a business card
exchange utility... can all identify and locate matching peer

entities in order to make use of their services.

The IrDA chose to base its initial standards on a 115kbit/s UART
based physical layer that had been developed by Hewlett-Packard
(HP-SIR) [1] [2], and an HDLC based Link Access Protocol
(IrLAP) originally proposed by IBM [3] [4] [5].

During the course ofits first year the need to multiplex multiple
application-to-application streams over a single IrLAP connection

was identified and with it the need to provide a means for locating
and identifying the function of application entities offerings
services over an IrDA interface. These needs led to the
development of the IrDA Link Management Protocol (Ir(LMP) [6].

This paper provides an introduction to the services provided by a

IrDA platform. These are services upon which new families of
Infrared aware applications will be build. End users will not be
tied to either applications or platforms from a single vendor.

2. IrDA System Overview

The IrDA Architecture in Figure 2.1.

LM-IAS Transport
Services Services

Link Mgt.
Information Transport
Access Entities
Service eg. IFTP or Tiny
(LM-1AS) ™

LM-MUX
Services

Link Mgt. Multiplexer (LM-MUX)
IrLAP

ItDA IrLAP Services
Framer

SIR: SIR: 4pPM | mertace
UART scc Sce Phyalcal

P400-115.2k| [1.152Mbps || 4Mbps | Laver
Original —

HE-SiR Joint HP, IBM, Sharp
Proposal to IrDA

Figure 2.1 IrDA Architecture

There are now three components to the physical IrDA layer:

2 The 1.152Mbps and 4Mbps physical layers are currently part of

a proposal to the IrDA by HP, IBM and Sharp. It is anticipated

that this proposal will be adopted in early 1995.

1. The original 2400bps-115.2kbps HP-SIR [1] based scheme
using a conventional UART with character stuffed packet
framing

2. A 1.152Mbps scheme that retains the same modulation
scheme, but uses a synchronous communications controller
and conventional HDLC bit stuffing [7].

3. A 4Mbps scheme that uses a 4PPM modulation scheme
and frames packets with a sequence of code violations [7].

From the point of view of the Link Access Protocol (IrLAP) [5],
the recent 1.152Mbps and 4Mbps extensions are regarded
merely as extra speeds that may be negotiated when a device-to-
device connection is established. All three physical layer
schemes are designed to have a range of 1m at off axis angle of
up to £15 degrees. In practice, due to component tolerancing, on-
axis ranges can be substantially greater, and satisfactory
operation can be achieved at off-axis angles of 30 degrees or
more.

The Link Access Protocol (IrLAP) is a variation of multi-drop
HDLC [3]. It provides facilities for:

1. Controlling Hidden Terminal problems

2. Device Discovery

3. Device-to-device connect/disconnect and QoS negotiation

4. Data Transfer.

IrLAP is an asymmetric protocol and uses HDLC in its normal
response mode (NRM). This means that once an IrLAP
connection has been established, one station becomes a primary
whilst the other becomes a secondary. In the context of a point-
to-point connection there is very little difference between the
behaviour of primary and secondary stations. However, as we
shall see, Ir(LAP has a the potential to be extended to provide
point-to-multipoint device-to-device connectivity. In this case a
single primary device would be able to communicate with several
secondary devices, but the secondary devices will not be able to
communicate directly with each other.

The Link Management Protocol (IrLMP) [6] consists of two parts,
a connection oriented multiplexer (LM-MUX) and a directory
service (LM-IAS). With the exception of the directory service
itself, there are no fixed addresses within the IrDA architecture.
Device addresses are chosen at random and exchanged during
IrLAP discovery. Address space collisions are resolved by the
device that initiates discovery. Likewise ‘port’ space above

LM-MUX is dynamically assigned. The LM-IAS directory service
then serves as a means to identify the application services

present within a device and the addressing information required
establish contact between application peers.

2.1 Addressing

Within the basic IrLAP/IFLMP IrDA platform there are three levels

of addressing:

1. Device Addresses: 32-bit randomly chosen identifiers
exchanged between devices during IrLAP/ILMP device
discovery.

2. IrlLAP Connection addresses: 7 bit HDLC secondary
addresses assigned to a secondary device by the primary

during IrLAP connection establishment and used for the
duration of that connection.

3. IrLMP Multiplexer connection addresses: Logically an
LM-MUX service access point is addressed by the
concatenation of a 32-bit device address and an 8 bit
multiplexer port selector. Once an IrLAP connection is

established the IrLAP connection address serves as a
synonym for the device address. A multiplexer connection is

labelled by the addresses of the LM-MUX service access
points at either end of the connection®

LHMUX Cllents Station A
. Mutpoint

Kt
—— WAP-Connection
~——= L3AP-Connecton
S WAP servics

Access Point (SAP)
T Uk Service Accens

Point (LSA)
® Connection Endpoint

LSRPSELP oo LA LSAPSELY LSAPSEL=)) Statlon ©
e LAaUX Secondary

Giianis

Figure 2.2 IrLAP and IrLMP Connections

The relationship between IrLAP connections, LM-MUX
connections/connection end-points and LM-MUX service access
points is shown in Figure 2.2

2.2 Link Access Protocol (IrLAP)

IrLAP, the IrDA Link Access Protocol [3], is based on HDLC
operating in the Normal Response Mode (NRM) [3]. Typically this
mode of operation has been used on multi-drop serial lines
between say a terminal controller and a group of terminals
sharing the serial line. The terminal controller acts as a primary
and regularly polls each of the attached terminals. There are two
attractive artefacts to this behaviour in the context of directed
short range infrared communications:

1. Once the device-to-device connection has been established
then in the absence of aberrant behaviour, access to the
shared media is contention free.

2. The constant reversal of the ‘line’ due to the polling
mechanism acts as a beacon to indicate to other devices

that approach and active link that the media is in use.

In today’s world of peer-to-peer communication a master/slave
protocol may seem something of an odd choice. However, it is
reasoned that for directed communication the majority of real life
scenarios can be addressed by the provision of a single point-to-
point link between a pair of devices. In this context the difference

between primaries (masters) and secondaries (slaves) becomes
moot. Indeed, all differences between primary and secondary are

masked by the IrLMP layer above IrLAP so that applications need

not be aware of this minor asymmetry.

ILAP operates in two main modes:

1. Contention Mode: Procedures that occur in contention mode
are device discovery, address conflict resolution and

connection establishment. All contention mode traffic
occurs at 9600bps over the HP-SIR/UART physical layer.

2. Connection mode is entered at the point that an IrLAP
connection is established. The communication speed is
changed to the rate negotiated in the connection setup
messages.

Connection mode traffic has priority over contention mode traffic.

Contention Mode MAC Rules

Once the IrDA stack in a device has been enabled it must sense
the media for a minimum of 500ms. Also, adevice must sense
the media as idle for at least a further 500ms prior to repeating a

® This is similar to a TCP/IP connection being labelled by the
concatenation of IP address and port number at each end of the

connection. Also this leads to the restriction that there may be at
most one TCP/IP connection between the same pair of TCP
ports. A similar restriction applies to LM-MUX connections.

contention mode procedure. 500ms is absolute upper bound on
the time that either a primary or secondary station may retain the
right to transmit frames. Shorter intervals may be negotiated
during connection establishment.

Connection Mode MAC Rules

Once and IrLAP connection has been established access to the
media is mediated by the exchange of a token (the P/F bit in the
HDLC control field). Both primary and secondary stations monitor
the exchange of this token and provide status indications upward
in the event of deteriorating link quality or loss of connection. A
station may transmit a number of frames, up to a limit bounded by
the negotiated window size, maximum data packet size and the
overriding turnaround time for returning the token to its peer.

2.2.1 Hidden Terminal Management

We have already touched on the hidden terminal management
capabilities of IrLAP. By placing an absolute upper bound on the
link turn around time it is possible to ensure that each end of an
IrLAP connection makes regular transmissions that act as a
beacon to indicate that there is an established IrLAP connection
in the vicinity. Hidden terminals (hidden from one end of the
connection) remain silent in the presence of an active IrLAP
connection.

2.2.2 Device Discovery and Address Conflict
Resolution

An IrDA device address is a 32-bit identifier that a station
randomly assigns to itself. Within the relatively small extend of
the ‘reachspace’ the probability of two or more devices choosing
the same address is relatively small’. IrLAP provides the facility
for its client (IrLMP) to instruct devices with colliding addresses
to select new device addresses. IlLMP drives the address
resolution process by making a single attempt to resolve each
address conflict.

Device discovery takes place in contention mode. Device
discovery is used to retrieve <DeviceAddress><Devicelnfo>
tuples from devices in the vicinity.

<Devicelnfo>=<ServiceHints><DeviceNickName>

Service hints is an extensible bit map that provides for a very

coarse characterisation of the services offered by the device:
currently defined hints bits can specify a device as offering the
services of a PDA, a Computer, a Printer, a Modem, a Fax, LAN

Access, Telephony, or a File Servers. It is incumbent on the

designers of an application service to state what hints bits will be
set if an instance of that service is available with a station.

The Device Nickname is a short name that may be presented to

the user in order to select between two otherwise identical
devices.

A slotted discipline is used for discovery. The station initiating
discovery issues a request that specifies the use of 1, 6, 8 or 16

slots. Stations receiving this request randomly select a slot
between 0 and the specified upper bound minus 1 in which to
make their response. The initiating station then ‘calls’ out each
slot in turn, marking its start with a packet that encodes the slot

number slot being polled. Finally the initiating station marks the
end of discovery with a final packet that includes the stations own
discovery information. Device discovery is illustrated in Figure
23.

* Actually the generation of good quality random numbers is an
issue here. If the device address of two devices do collide and
they both employ the same pseudo random sequence then their
next choice of device address may very well collide as well. Some
genuinely random process must be incorporated in the process
of assigning a device address.

-®
XID Resp

-© @="

XID(A 0f xo(1f X0 [2f X0 [3f XD [4f XD 5] xo(sf xo 7t XID[FF

*H H H H H H H H H XOresp
B selectsot2 " : = [! ' o | .
G somctsite , . . o ! . ! ,

e, . H L

Figure 2.3 Eight Slot Device Discovery

2.2.3 Connection Establishment

An IrLAP connection is initiated by the transmission of a Set
Normal Response Mode (SNRM) frame, using Contention mode
MAC rules, by the station that will initially become the primary
station. The SNRM frame contains a number of negotiable QoS
parameters, including: data rate capabilities; tumnaround

requirements negotiable from 500ms down to 50ms; maximum
data packet size; receiver window size, 1 through 7; Link

disconnect and threshold times to deal with packet loss. The
SNRM also contains a device address (retrieved by a recent
discovery operation) and assigns a 7-bit connection address for
use during the connection.

Figure 2.4

Contention Rate (9600bps) :
"_Negotiated Rate (eg. 115.2kbps or 4Mbps)

5¢,SNRM,P(A B) 3 RO.P R3,P

A (Pri): r:' : E

B(sec):

IrLAP Connection Establishment

The station addressed by the SNRM responds to the SNRM with
an Unnumbered Acknowledge frame, also at the 9600bps
contention rate, that contains the results of the negotiation

process. At this point both stations apply the newly negotiated

parameters. The primary immediately sends an Receiver Ready

frame to indicate to the secondary that it is now using the
negotiated communication parameters®.

2.2.4 IrLAP Data Transfer Services

Once an IrLAP connection has been established then the data
transfer service between devices is similar to that provided by
HDLC operating in Normal Response Mode. It provides for the
reliable sequenced exchange of packets. Provision is also made
for the transmission of Unnumbered Information (Ul) frames.
These frames are sent at the negotiated data rate and have

® Careful timing is needed here to ensure that both the primary
and secondary have applied the new parameters prior to the
transmisson of the RR.

priority over the exchanged of sequence information (I) frames,
but they are also subject to loss without recovery.

2.3 Link Management Protocc! (IrLMP)

The IrDA Link Management Protocol (IrLMP) [6] provides two
distinctly different types of services. Firstly it provides a level of
connection oriented multiplexing (LM-MUX) on top of IrLAP.
Secondly it provides an Information Base that hold details of the
application entities present in the local station that are current
offer services to other IrDA devices. Objects in this information
base carry the essential addressing information necessary
establish communication with the corresponding application
entities. Access to this Information Base is provided by an
Information Access Server and an corresponding Client.
Collectively the Information Base, the Server and the Client

provide an Information Access Service (LM-IAS). Both LM-IAS
Client and Server entities are LM-MUX clients.

2.3.1 The Multiplexer

The LM-MUX provides a simple level of switching over the top of
an IrLAP connection. It also hides the master/slave nature of
IrLAP from the application and provides a symmetrical set of
services to IrLMP clients.

The key goal here is to allow multiple independent sets of
application entities to share access to the underlying IrLAP
connection. This is increasingly important as the ability of
portable platforms to multi-task improves. Also the mix of
applications running on a portable platform tends to be chosen by
the end-user from a potentially varied list of vendors. With this
degree of ‘end-user’ integration it is simply not tenable to offer a
solution that does not allow applications to share access to the IR

media. For example: consider a file sharing application that allows
portable device to access files on a desktop machine. This may
result in a relatively long lived connection between the devices
and the end user may not really be conscious of its existence. It
would not be acceptable to have to shut down the file sharing

software in order to then gain access to say an E-mail, printing or
Fax services.

The functionality provided by LM-MUX has already been

presented in Section 2.1 and Figure 2.1. LM-MUX also provides a
device discovery operation that combines IrLAP device discovery
and address conflict resolution into a single operation.

The introduction of a simple multiplexing function above the

reliable device-to-device data transfer service of IlLAP does
introduce one problem:

In general, multiplexing LM-MUX channels over a single IrlLAP

connection can lead either to data loss or deadlock. To illustrate
consider a pair of peer application entities A and B connected by
two LM-MUX connections. One LM-MUX connection is used to
exchange data, while the other is used to send control. A sends

on both connections and B receives on both connections.

Consider what happens if A sends a large amount of data to B
while B attempts to read first from the control channel and then
from the data channel. The following code fragments illustrate
this behaviour®:

/* Behaviour of sender A */
foril. «.) ¥

res = send(data_fd, data, sizeof(data));

}
res = send(control fd, ctrl,sizeof(ctrl);

® Assuming blocking send and recv operations

/* Behaviour of receiver B */
recv(control_fd, ctrl,sizeof(ctrl));
recv(data_fd, data, sizeof(data));

Data inbound for B is not being read. At some point buffer space
holding inbound data for B becomes exhausted. We could allow
the IrLAP flow-control mechanism to pause the sending of data
by A. However, if we do that there is then no way that the control
information from A to B can now be sent to allow B to progress to

reading the data. The system is deadlocked. This is a general
problem for any system that multiplexes channels over a reliable
channel.

Alternatively, we avoid this deadlock situation by allowing IrLMP

LM-MUX to discard inbound data that it cannot deliver. However
this destroys the reliable delivery property that IrLAP gives us.

Allowing the deadlock possibility is by far the greater of these two
evils, so the designers of ILMP took the view that LM-MUX may

discard inbound data that it is unable to deliver. The LM-MUX
data transfer service is therefore best effort rather than reliable.
The only possible cause of packet loss in these circumstances is
inbound congestion within an LM-MUX channel. This inbound
congestion may becompletely avoided by the inclusion of a flow-
control mechanism within the channel between application
entities.

The IrDA offers two suggestions for addressing this problem: a
variant of the ISO 8073 Class 2 Transport Protocol [8] named
IrTP [9]; and a bared credit based flow-control scheme dubbed
Tiny TP [10].

As an alternative to flow control it should also be noted that
designers of LM-MUX clients may choose instead to implement a
retransmission scheme to recover from data lost due to inbound
congestion; and in some circumstances the loss of data could

simply be tolerated (e.g. playback of audio data).

Since these three altemnatives exist, the IrDA has not mandated
the use of any one particular.

There is one last facet of the multiplexer that is worthy of note.
The negotiation present within IrLAP means that there is a
deterministic upper bound to the time between the reversals of
the underlying IrLAP connection. Some application designers
may wish to exploit this deterministic behaviour however the

presence of multiplexed streams provided by Ir(LMP obscures any
guarantees provided by IrLAP. LM-MUX provides amode of
operation that grants exclusive access to the underlying IrLAP
connection to just one LM-MUX connection.

2.3.2 Information Access Services

So far we have described a relatively straight forward
communications mechanism that supports multiplexed

communication channels between a pair of devices. A key goal
for the IrDA has been ease of use. Previous IR solutions have
had a tendency to disappoint users because the burden of
ensuring that compatible peers application entities are active at

each end of the link has fallen on the end-user. The LM-IAS
within IrLMP provides the means for an application entity to

identify and locate a compatible peer entity.

The LM-IAS Information Base contains a number of simple
objects. Each object is an instance of a given class and contains
a number of named attributes.

The class of an object implies the nature of the application entity

that it represents, the data transfer method(s), the semantics of
the information stream exchanged between peer entities etc. It

also scopes the semantics of the attributes contained within
instances of the given object class.

Both class names and attribute names my be up to 60 octets

long. Since the meaning of an attribute is scoped by the class of
the enclosing object there is no strict requirement to administer
the attribute name space. Object class names do need to be
administered, however it is intended that with such a large name

space some sensible conventions will ensure that class name
collisions do not occur. For example, Object Class definitions

defined by the IrDA all start with the root “IrDA:".

Whilst in general attributes are scoped by the class of the
enclosing object some attributes are of such general utility that
they may be regarded as having global scope. In a formal sense
this requires that they are identically defined in all object classes
that adopt the use of such global attributes. Typically global
attributes arise in order to express an address within the IrDA
environment. For example, IrLMP defines the attribute
“IrDA:IrLMP:LsapSel” to identify the LM-MUX service access
point of a directly attached application entity. IrTP defines the
attribute “IrDA:IFTP:TsapSuffix” to carry the portion of the
Transport service access point address that extends the 32-bit
device address. Likewise Tiny TP defines the attribute
“I'DA:TinyTp:LsapSel”. Application entities advertise their
accessibility via these mechanisms by the inclusion of the
corresponding attribute.

There are three attribute value types:

° Integer: A 32 bit integer

° User Strings: Intended for presentation via a User Interface.
Up to 255 octets in length with multilingual support.

° Octet Sequence: An opaque sequence of up to 1024 octets

of information. The attribute may impose further structure on
the contents of the sequence. This is a good way to cluster
a body of information under one attribute.

The IrDA requires that every IrDA compliant device provides a

“Device” object that carries a long form of the device name and
an indication of the version of IrLMP implemented on the device
and the optional features that have been implemented. The long
device name is useful as it allows names of up to 255 octets in
length whereas the nickname exchanged during device discovery
is restricted to 19 octets (<10 characters if Unicode is used to

encode the nickname).

Access to a remote IAS Information Base is provided by a local

IAS client entity that communicates with an IAS server entity on
the remote device. The IAS server is statically bound to LSAP
0x00 on the multiplexer. This is the ONLY fixed address in the
IrDA environment. All other application services are located by
inspection of the Information Base. The IAS Clientand IAS

Server entities provide a number of querying operations on the
Information Base. Get Value By Class is the only mandatory
operation that both must support. This provides a ‘shot-in-the-
dark’ mode of retrieving attributes from objects. The notion is that
a client application entity knows what application service it seeks

to make use of. For example a file sharing entity would be looking
to make contact with a matching file sharing entity. It therefore
knows the object class name of Information Base objects that
represent such an entity and implicitly it knows the name and

semantics of attributes attached to such objects. There is

therefore little value in the application entity browsing the
Information Base, it merely needs to attempt to retrieve known

attributes from an instance of a known object class. This is
precisely what Get Value By Class does.

The remaining optional IAS operations: Get Information Base
Details; Get Objects; Get Value; Get Object Info and Get

Attribute Names provide for richer interactions with the

Information Base including the ability to browse the Information

Base.

2.3.3 IrLMP Client Example

Consider a Fax Modem that offers independent data and control

channels. The Fax modem advertises its data service by
installing the following object in its local Information Base:

object 1 class FaxModemData {
attribute IrDA:TinyTP:LsapSel =

Integer (0x05) ;

The FaxModemData service makes use of Tiny TPand is
accessible with an LM-MUX service access point selector of 5.

An client application entity that wishes to make use of the
FaxModemData service performs the following operations:

IasValue *lsapSel;
DiscoverList *dl;

DeviceAddress *da;
FILE *fp;

/* Device Discovery */
dl = LM _DiscoverDevices (slots);

fp = NULL;

while (fp == NULL) {

/* Search Hints for Fax Device */

while (dl != NULL) {
if (dl1->deviceInfo.hints & FAX_MASK) {

da = dl->deviceAddress;

break;
)
dl = dl->next;

}

/* Check for end of Discovery List */

if(dl == NULL)
break;

/* Read the LM SAP Selector */
lsapSel = LM_GetValueByClass (

da, "FaxModemData",
“IrDA:TinyTP:LsapSel") ;

/* Connect if we got an LM-MUX SAP Sel */
if(lsapSel != NULL) {

fp = TinyTP_Connect (lsapSel,...)

}
dl = dl->next;

}

2.4 Upper Layers

We have already made mention of both IrFTP and Tiny TP. Both
of these may still be regarded as part of the plumbing as they
form part of the conduit between peer application entities.

° IFTP [9] is based on the ISO 8073 Transport Protocol Class
2 [8]. The main task of the IrTP specification is to describe
the interpretation of Transport Service Access Point
Addresses in an IrDA context and to provide a mapping
from the ISO Network Service primitives used by 8073 to
IrLMP LM-MUX service primitives.

IFTP provides:

Per transport connection flow control

Segmentation and reassembly of arbitrary sized PDUs

Graceful disconnect

More multiplexing.

e Tiny TP [10] defines a credit based flow-control scheme
and relies on LM-MUX for multiplexing.

Tiny TP provides:

Per transport connection flow control

Segmentation and reassembly of arbitrary sized PDUs

There is also scope for the development of transport protocols
that exploit the deterministic behaviour provided by exclusive
mode.

Members of the IrDA are currently working to define an
mechanism for application level object exchange, OBEX [11].
Objects may berecords from Personal Information Managers,
diary entries, business cards etc.; Word processor, spreadsheet

other traditional types of file; or other parcel of information e.g. an

information hunting robot launched into a networkrom say a
PDA attached via IR to a payphone in an airport lounge.

2.5 Application Interfaces

Widespread implementation of the IrDA platform services
described previously and the availability of consistent application
programming interfaces (APIs) is the key to creating a market for
IrDA aware applications.

The IrDA community is also currently working on two types
Application Programming Interfaces (APIs) for IrDA. Legacy
communications APls and native IrDA APIs.

Legacy APIs

There is a general perception of Infrared as merely a cable
replacement technology. From the preceding discussion it should

be apparent that the inclusion of I(LMP, particularly LM-IAS,
makes it much more. Nevertheless this perception persists and
there is a desire to be able to run legacy serial and parallel port
communications applications over Infrared in much the same way

that terminal emulation applications were transitioned onto LANs

Application

Existing SerialParallel API
eg. Int 14, VCOMM, /devitty

from RS232 cables.

Serial/Parallel Emulation
Serial/ Protocol Serial/
Parallel Parallel

Port Port
LMHAS || Emulation Emulation {| LMHAS

LM-MUX | LM-MUX

ItDA IrLAP l DA IrLAP

Figure 2.5 Legacy Communications API Support

The IrDA has a Working Group known as IrCOM that is working
on the emulation of the legacy communication interfaces typically

provided by serial/parallel device drivers.

Native APIs

New applications will take full advantage of the potential that
IrLMP offers to enable compatible application peers to identify
and locate each other. This requires a native API for IrDA that
exposes the full functionality of IrLMP, IFTP and Tiny TP to the
application programmer.

IrDA members are interested defining a Winsock 2 Service
Provider and APl semantics [12][13]. Mapping the LM-IAS

services into Winsock 2 is likely to prove a particular challenge!

Sockets Based API

AF_IRDA AF_IRDA
BotbyY, SOCK_SEQPACKET SOCK_RAW

LM-IAS
Services

Link Mgt.

Information Transport

Access Entities
Service eg. I'TP

(LM-1AS) Tiny TP

LM-MUX
Services

Link Mgt. Multiplexer (LM-MUX) |

IrLAP
IrDA IrLAP Services

Figure 2.6 Sockets Based API

3. Application Services

With a stable platform on which to build application and

application service designers can rapidly populate the space
above the base platform. Some services will come about as the
result of either open or closed collaborations, others will be the
work of an individual or a single organisation. It is incumbent on
application service designers to specify:

1. The IrLMP service hints that will be set if an instance of the
service is being advertised.

2. Anobject class to carry the parameters essential to
establish communication between peers.

3. Data transfer methods: i.e. raw, over IrTP, over Tiny TP or

some other method specified in the service definition.

4. The application level protocol.

The degree to which the application service designer makes this
information open is a matter of judgement for them. They may
choose to seek endorsement from the IrDA; they may simply
publish the specification of their service. Alternatively it may be
regarded as proprietary and closed.

4. Summary

The future of short range directed infrared data communications

looks bright!

With some 80 member companies the technology developed
within the IrDA will soon be available on just about every
significant mobile computing platform. End-users will be able to
casually exchange, print and share information from whole
documents to snippets from a diary or a business card. They will
be able to do this without the hassle of needing to have the right
cables and without having to do combat with pages of
configuration and setup dialogues commonplace with serial and
networked communication. Within the nextyear products with
high speed IrDA interfaces will be readily available in the

marketplace.

The ease of use that will be characteristic of IrDA applications is
largely due to the device discovery and QoS negotiation facilities
in Ir(LAP and the Information Access Services specified in Ir(LMP.

5. References

1] P. D. Brown, L. S. Moore and D. C. York, “Low Power

Optical Transceiver for Portable Computing Devices”,

U.S. Patent No. 5,075,792, Assignee: Hewlett-
Packard Company, December 24, 1991.

2] Infrared Data Association, “Serial Infrared (SIR)
Physical Layer Link Specification”, Version 1.0, April
27,1994,

3] International Organisation for Standardisation (1SO),
“High Level Data Link Control (HDLC) Procedures -
Elements of Procedures”, ISO/IEC 4335, September
15, 1991.

4] T. F. Williams, P. D. Hortensius and F. Novak,

“Proposal for: Infrared Data Association Serial Infrared
Link Protocol Specification”, Version 1.0, IBM

Corporation, August 27, 1993.

[5] Infrared Data Association, “Serial Infrared Link Access

Protocol (Ir(LAP)”, Version 1.0, June 23, 1994.

[6] Infrared Data Association, “Link Management
Protocol”, Version 1.0, August 11, 1994.

7] HP/IBM/Sharp, “PROPOSAL: Fast Serial Infrared
(FIR) Physical Layer Link Specification”, Proposal to
the Infrared Data Association, September 13, 1994.

18]

9]

[10]

1

n2]

[13]

6.

International Organisation for Standardisation (ISO),
“Information technology - Telecommunications and
information exchange between systems - Open
Systems Interconnection - Protocol for providing the
connection-mode transport service”, ISO/IEC 8073,

December 15, 1992.

Infrared Data Association, “Use of ISO 8073 as an

IrDA Transport Protocol”, Version 1.0, August 12,
1994.

Infrared Data Association, “TinyTP: A Flow-Control
Mechanism for use with IrLMP”, Version 0.1a, January

16, 1995.

Infrared Data Association, “Object Exchange
Protocol”, Version 0.1a, January 4, 1995.

Winsock 2, “Windows Sockets 2 Application

Programming Interface: An Interface for Transparent
Network Programming Under Microsoft Windows”,
Revision 2.0.6, February 1, 1995.

Winsock 2, “Windows Sockets 2 Service Provider
Interface: A Service Provider Interface for Transparent
Network Programming Under Microsoft Windows”,
Revision 2.0.6, February 1, 1995.

IrDA Contact Information

Further information about the IrDA and copies of the IrDA

Standards may be obtained from:

John Laroche
Executive Director
Infrared Data Association
P.O. Box 3883,
Walnut Creek
Califonia
USA 94598

Tel: (510) 943 6546
Fax: (510) 943 5600

E-mail: jlaroche @netcom.com

7. Author Information

The authors may be contacted at

Hewlett-Packard Laboratories, Bristol

Filton Road
Stoke Gifford
Bristol, BS12 6QZ
United Kingdom

Tel: +44 (117) 979 9910
Fax: +44 (177) 922 8920

E-mail: skw@hplb.hpl.hp.com
im@hplb.hpl.hp.com

Infrared Data Communications with IrDA

Charles D. Knutson, Ph.D.

Vice President, Research and Development

Chair, IrDA Test and Interoperability Committee

Glade Diviney
Manager, Test Tools and Services

Counterpoint Systems Foundry, Inc.
Corvallis, Oregon

knutson@countersys.com

Abstract

IrDA infrared communication is an inexpensive and widely adopted short range wireless
technology that allows devices to “speak” easily to each other. Key protocol features

make operation simple even for inexperienced users or devices with very little user
interface. Digital cameras, phones, pagers, data collectors, set-top boxes, modems,
kiosks, instruments, machinery, ID badges, watches, and computer peripherals are some

of the natural users of this technology. This paper introduces IrDA infrared data
communications and explores both mandatory and optional IrDA protocol layers and

strategies.

1.0 Introduction

The Infrared Data Association was formed to enable universal point and shoot infrared

connectivity between devices of all types. Today there are hundreds of devices that
implement IrDA communication protocols and the dream of ubiquitous data transfer is
becoming more of a reality. This paper briefly describes IrDA technology from low-level

physical layers up to high-level optional protocols. It also describes IrDA Lite, a set of
strategies for implementing minimal solutions for embedded systems.

2.0 The Infrared Data Association (IrDA)

The Infrared Data Association (IrDA) was formed in June, 1993. At IrDA’s charter

meeting, fifty companies came together to agree upon standard methods for

communicating data via short range infrared transmission. Since that time, more than one
hundred additional companies have joined IrDA, and hundreds of devices are currently
available that implement IrDA communication protocols.

IrDA is administered by an Executive Director (John LaRoche) and an executive staff.

The work of IrDA is conducted through three committees, whose chairs are elected each

year. The Technical Committee is currently chaired by Dave Suvak of Counterpoint
Systems Foundry, Inc. This committee refines and extends the hardware and software

standards for IrDA. All new technical proposals come through this committee and its

working groups. The Marketing Committee is currently chaired by Brian Ingham of IBM.
This committee handles the marketing and promotional concerns of IrDA. The Test and

Interop Committee is currently chaired by Charles Knutson of Counterpoint Systems
Foundry, Inc. This committee deals with test specifications for hardware and software
standards, as well as issues concerning the spread of interoperability and customer “out of

the box” experience. The bulk of the work in IrDA is performed by special interest
groups (SIGs) and working groups that carry specific charters.

3.0 The Promise of IrDA connectivity

One of the earliest motivations of the companies involved in IrDA was to eliminate wires
and connectors with their accompanying limitations. Wires fray, wear, break, corrode, get

tangled, and sometimes fail to reach far enough. The connectors on wires come lose,

break, or otherwise become mangled and unusable. Wired connections clog desks with
spaghetti-like entanglements, and are notoriously forgotten by the portable traveler who

only later discovers that his mobile computer is useless without that one special wire that
was left behind.

The core IrDA protocols were designed to replace wires with a “virtual wire” and some
ability to accesses services over it. Originally, the focus of IrDA was to deliver this level

of connectivity, and then let manufacturers worry about specific implementations above
that. Since that time, it has become obvious that once the physical connector is gone

(leaving in essence a “universal” connector), standardizing on higher level protocols can
provide even greater levels of interoperability in the IrDA user space. Subsequently, a
number of optional protocols have been approved, most of them derived from a specific

vertical application model. Section 5.0 of this paper discusses the mandatory protocol
layers of IrDA. Section 6.0 describes the optional higher-level protocols.

With these high-level protocols, a number of interesting and valuable use models are
available to users. By standardizing on these protocols, application vendors can build

systems that interoperate with systems of other vendors. This approach is quite similar to
what we now see happening in the World Wide Web. The low-level TCP/IP protocol was

not sufficient to provide interoperability. Without some higher-layer protocol, there were
myriad ways of moving information, with a few garnering more common use than others
(like FTP). However, when HTTP began to be used by web browsers with a standard file

format (HTML), the elements were in place for a usage explosion. Suddenly anyone
could build a web site, because they understood the file format. Anyone could access a

web site using the common protocol. And anyone could build software to access anyone
else’s web site. When users had the “Ah ha!” experience of what the web could do,

independent entrepreneurs did the rest and the web exploded, to the benefit of users. That

is the power of universal data access. In the short range, walk up, point and shoot space,
IrDA offers that same promise, which is becoming more and more a reality.

4.0 High-Level Overview

The IrDA protocols are organized in a traditional layered or stacked architecture. These

individual layers are described in the next two sections. Some of these layers are required

for a device to carry the IrDA logo. These are treated in Section 5. In addition, there are
optional layers that apply to specific use models. These are discussed in Section 6.

The current protocols provide connectivity at distances up to one meter, and at speeds up

to 4 Mbps. IrDA is interested in extending both of these limitations, and is currently
working on extending specifications in both cases.

In a typical scenario, a user might have a PDA that has phone and address lists. The user
might walk up to another PDA user and beam selected items using IrDA’s IrOBEX

protocol. Two Palm III users might discover that they each have games that the other
does not have. These can also be beamed to the other device on the spot. A laptop user
might want to print a document, but lacks a parallel cable. With IrDA capability on both

the laptop and the printer, the laptop selects the appropriate LPT port (the one redirected
to the IrDA port) and prints. These and other use models extend to devices of all types,

including digital cameras, LAN access devices, pagers, cell phones, laptops, PDAs,
printers, scanners, medical devices, etc. Some of these will be discussed in the individual

discussions in Section 6 where the protocol relates to a specific use model.

In the basic IrDA use model, there are two devices. One is the primary and the other is

the secondary. The primary device is responsible for selecting a device within its visual
space, establishing a connection, and maintaining the virtual wire or link. The secondary

responds when spoken to. At the beginning of a typical IrDA operation, the primary

initiates a process known as “discovery”, in which it explores its visible space for
devices. From those devices that respond the primary selects a device and attempts to

connect to it. During connection establishment, the two devices negotiate to understand
each other’s capabilities. In this way a connection can be optimized despite the
unpredictable differences between two disparate devices. Once they have negotiated, they

will jump to their highest common transmission speed, and attempt to communicate in
ways that optimize the throughput and reliability of their connection.

Having established a connection, the devices may now search the services of the other
devices. If the other device supports a desired service, a connection can be made to the

service. At this point, applications on either side of the connection can transfer data.
Obviously there are considerably more details than have been presented here, and the

IrDA specifications are the definitive source for that information.

5.0 Required Layers

In this section, we explore the required IrDA layers, starting from the bottom and
working our way up. Each of these layers is described in painstaking detail in

corresponding IrDA specifications. The references for these documents are provided in

Section 9.

Figure 1 shows the basic organization of the IrDA stack.

IAS Tiny TP

[rLMP

IrLAP

Framer/Driver

Physical Layer

Figure 1. IrDA protocol stack layers.

5.1 Physical Layer

IrDA transceivers broadcast infrared pulses in a cone that extends from 15 degrees half
angle to 30 degrees half angle off center. The IrDA physical specifications require that a
minimum irradiance be maintained so that a signal is visible up to a meter away.

Similarly, the specifications require that a maximum irradiance not be exceeded so that a
receiver is not overwhelmed with brightness when a device comes in close. In practice,

there are some devices on the market that do not reach one meter, while other devices
may reach up to several meters. There are also devices that do not tolerate extreme

closeness. The typical sweet spot for I'DA communications is from 5 cm to 60 cm away
from a transceiver, in the center of the cone.

IrDA data communications operate in half-duplex mode. The reason is quite simple.
While transmitting, a device’s receiver is blinded by the light of its own transmitter.

Because of this, full duplex communication is not feasible. The two devices that

communicate simulate full duplex communication by quickly turning the link around.
The primary device controls the timing of the link, but both sides are bound to certain

hard constraints and are encouraged to turn the link around as fast as possible.

Transmission rates fall into three broad categories: SIR, MIR, and FIR. Serial Infrared

(SIR) speeds cover those transmission speeds normally supported by an RS-232 port
(9600 bps, 19.2 Kbps, 38.4 Kbps, 57.6 Kbps, 115.2 Kbps). Since the lowest common

denominator for all devices is 9600 bps, all discovery and negotiation is performed at this
baud rate. MIR (Medium Infrared) is not an official term, but is sometimes used to refer

to speeds of .576 Mbps and 1.152 Mbps. Fast Infrared (FIR) is deemed an obsolete term

by the IrDA physical specification, but is nonetheless in common usage to denote
transmission at 4 Mbps. “FIR” is sometimes used to refer to all speeds above SIR.
However, different encoding approaches are used by MIR and FIR, and different

approaches are used to frame MIR and FIR packets. For that reason, these unofficial
terms have sprung up to differentiate these two approaches. The future holds faster
transmission speeds (currently referred to as Very Fast Infrared, or VFIR) which will

support speeds up to 16 Mbps.

5.2 Framer/Driver

The framer and the driver are actually two separate functions, but have enough in

common that they are typically grouped together (and commonly referred to simply as
“framer”). The driver portion refers to the software that acts as a device driver for the

system’s transceiver controller. This driver initializes the infrared hardware, changes

transmission speeds, delivers data to the transceiver, and receives data from the

transceiver.

The framer portion refers to the bundling of a data packet into a form that can be given to

the hardware. This may include the calculation of cyclic redundancy check value, the
addition of start and stop bits, and transparency for reserved bytes. Because the framing
approach varies with the transmission speeds, it is most common for the framer and

driver functions to be combined. In this way, all hardware dependencies in a system can
be localized to one section of the IrDA stack.

5.3 IrLAP: Link Access Protocol

The IrDA Link Access Protocol (IrLAP) is responsible for performing device discovery
and negotiation, and for preserving the physical connection, or “virtual wire”. It is at this

level that the concept of primary and secondary devices is relevant. I'LAP is based on
HDLC, adding features to facilitate the walk up, nature of IrDA connections.

IrLAP provides a reliable transmission medium on which to build additional

communications. It facilitates error detection, retransmission of lost or damaged packets,

and rudimentary flow control.

54 IrLMP: Link Management Protocol

The IrDA Link Management Protocol (IrLMP) allows one or more IrDA services to run

over a single I'LAP connection. Applications using an IrDA stack can read/write directly
to I'LMP, or can use other higher level protocols that, in turn, read/write to I'LMP. A
typical service running on IrLMP might include the printing application on an IrDA-

enabled laser printer. This application would register its service with IAS (described
below), and then be able to service a print job via the I'LMP connection, should a user

walk up and begin accessing the printer via the IrDA port.

5.5 IAS: Information Access Service

The Information Access Service (IAS) is the only required service available through

IrLMP. It is the mechanism by which applications advertise and access services.
Applications register their services when they load, and are given a specific selector,
called an LSAP (Link Service Access Point) Selector, by which the service can be

accessed by other devices. There are no pre-defined LSAP Selectors besides the IAS
itself at selector 0. When a device connects to another, an application can query the IAS

of the other device to determine what services it might have, and on which LSAP
Selectors. Once the LSAP Selector is known, the application can connect and begin data
transfer.

5.6 Tiny TP: Tiny Transport Protocol

Tiny TP is a transport protocol that provides two basic services: flow control and
segmentation and reassambly (SAR). Tiny TP allows flow control per service channel,

where the more rudimentary flow control provided by IrLAP controls the entire physical
link. Flow control in Tiny TP is credit based, permitting an application to extend enough

credit to the other side so that it won’t be overwhelmed. The remote device uses these
credits as packets are delivered. More credits are extended as space becomes available to

receive. Segmentation and reassembly provides a mechanism for delivering large packets

to the IrDA stack, allowing Tiny TP to break up packets (segmentation) on one side and,
on the other side, put them back together (reassembly). This approach takes the burden

off applications to be concerned with IrDA packet sizes. This feature is particularly
relevant for I'LAN.

6.0 Optional Layers

The following layers are all high-level protocols, and are not strictly required by IrDA.
However, some of them are essential within the context of certain use models, in the

same way that HTTP is essential for web access, even if it’s not part of a basic TCP/IP

protocol stack.

6.1 IrOBEX: IrDA Object Exchange

IrDA Object Exchange (IrOBEX) can be viewed as essentially “HTTP for IrDA”.

IrOBEX was designed to resemble HTTP, and it leverages what it can from this internet
protocol, adding capabilities that relate to the unique environment of IrDA. IrOBEX is

best used in situations where objects of some kind need to be moved from one device to
another. For example, two devices may exchange phone and address information, or
calendar information in vCard and vCal formats. Or, a handheld scanner may capture a

graphics image and beam it to a laptop to manipulate. Both of these are classic uses for
IrOBEX. Because of its universal applicability for object movement, where applicable,

IrOBEX is a required protocol for devices seeking interoperability certification.

6.2 IrCOMM

IrCOMM is designed to provide legacy support for applications that already run over

COM ports. For example, assume we have a PDA with a cradle that plugs into the serial

port of a computer. The desktop software for this PDA is designed to communicate using
a serial cable connected to the PDA cradle. To allow synchronization directly between

the computer and the PDA, the PDA could be enabled with 'lCOMM. Then, by selecting
a virtual COM port, the synchronization could take place over infrared without

introducing any changes to the computer’s software. This is an example of a legacy
application for I'COMM. While this works in legacy situations, 'lCOMM is strongly
discouraged as a platform for developing new use models, since it reduces IrDA’s rich

feature set to a virtual nine wires, requiring sophisticated applications to recreate many of
the capabilities that are already present in the IrDA stack.

6.3 IrLPT

IrLPT is part of the IrCOMM specification, and is also referred to as rCOMM 3-Wire
Raw. It deserves special mention because it is the mechanism by which legacy printing is

achieved between devices and IrDA-enabled printers. Support on desktops is achieved
through a virtual LPT port that maps to the IrDA port. When an application or printer
driver is configured with the virtual LPT port, infrared printing is enabled without

changes to the printer driver or application. As with IrCOMM, IrLPT is intended for
legacy support of existing applications. Because of its importance for legacy printing,

where applicable, IrLPT is required for devices seeking IrReady interoperability
certification.

6.4 IrTran-P

IrTran-P (IrDA Transfer Picture) represents a specific mechanism used by some
manufacturers to transfer digital images between devices. IrTran-P is an IrDA application
note, meaning that it represents a particular way of solving this problem, without carrying

the mandate of IrDA as the only appropriate way to do it. Ir'Tran-P is built on rCOMM,
and therefore requires the reconstruction of several key components to manage services

and object exchange. Specifically, IrTran-P adds SCEP (Simple Command Execute
Protocol) for service access and link management, and bFTP (Binary File Transfer
Protocol) for digital image object exchange. In addition, IrTran-P defines its own digital

image file format, UPF (Uni-Picture Format) so that IrTran-P devices can communicate

effectively.

6.5 IrMC: IrDA Mobile Communications

IrMC (IrDA Mobile Communications) is a set of four protocols proposed by the IrDA’s
Mobile Communications Working Group. This group is fundamentally concerned with

IrDA communication between telecom devices, such as pagers and cell phones. However,
many of the features of IrMC are applicable to other devices, such as PDAs. Because of
that, the scope of IrMC has expanded to include devices of all types. Ir'MC incorporates

the following protocols: FOBEX, [rCOMM, RTCON, and Ultra. [fOBEX, described in

Section 6.1, is used in IrMC to exchange vCards, vCalendars, and similar objects.

IrCOMM, described in Section 6.2, is used in IrMC to permit cellular phones to be used

as external modems, via a virtual COM port connection between a laptop (or other

device) and a cell phone. RTCON is described in Section 6.6. Ultra is a very small,
connectionless communication mechanism that severely constrained devices can use for

device programming and small object exchange using a connectionless version of OBEX.

6.6 RTCON

Real Time Transfer Control Protocol (RTCON) is used to transmit real-time voice and

control data over an infrared link. In a typical use model, a cell phone can be placed in a
cradle in a car, and an infrared link can be established between the speaker phone

mechanism in the car and the cell phone. This permits dialing and talking without holding
a cell phone while driving (which is illegal in some parts of the world—most notably
Europe and Japan). The call is made with the cell phone, but the voice data in the phone

is transferred via infrared to the in-dash speaker phone. This permits users to use their

normal cell phones without having to have a special cell number specifically for their car

(with accompanying duplicated fees).

6.7 JetSend

JetSend is a technology created and licensed by Hewlett-Packard for delivery of digital

imaging information via a variety of transport mechanisms. The first two transports on
which JetSend was implemented were TCP/IP and IrDA. JetSend permits devices to
negotiate to their greatest common image handling capacity, eliminating the need for

hardware-specific printer drivers. In a static, wired office environment, the accessible
printers don’t change that often. But for mobile devices such as laptops and PDA’s,

finding and installing the appropriate printer driver can be a significant problem. With
JetSend, any IrDA enabled device can approach an IrDA-enabled JetSend printer, and
render the best possible image.

7.0 IrDA Lite

Strictly speaking, IrDA Lite is not a protocol, but it is significant enough in the world of
IrDA to deserve brief mention. The majority of devices incorporating IrDA are embedded

devices. Most of these devices provide dramatically less memory than laptops or
desktops. IrDA Lite renders the minimal implementation of IrDA that still interoperates
with “full-featured” IrDA stacks. It does so by sacrificing speed, throughput, and non-
essential features.

The effort would be similar to removing parts from a car, but requiring that it still seat
one passenger and be sufficiently capable of traveling some distance under certain

conditions. For the use models where memory savings are worth the loss in throughput,
the fit is great.

Typical IrDA Lite strategies include limiting the packet size to 64 bytes, limiting window

size to one, limiting transmission speed to 9600, and using a simplified state chart. By
employing these and other IrDA Lite strategies, it is possible to achieve a two to five fold

reduction in RAM and ROM requirements. For some small devices, throughput and
features are not as important as memory, and the decision to-use IrDA Lite is easy. For
other devices, the tradeoffs are not so straightforward. In these cases, one need not

employ all IrDA Lite strategies. A designer can employ those strategies that make the
most sense, garnering the memory savings desired, without completely sacrificing

throughput or feature set.

8.0 Summary

The number of IrDA devices available has been growing rapidly for the last five years

and its growth continues to accelerate in the portable device market. The vision of
ubiquitous point and shoot connectivity is becoming more commonplace. The continued
spread of IrDA technology will be a key enabling factor in broadening acceptance of

portable devices of all types and sizes throughout the world.

9.0 List of IrDA Specifications

IrDA Serial Infrared Physical Layer Link Specification, v1.2, November 10, 1997

IrDA Serial Infrared Link Access Protocol (ItLAP), v1.1, Jun 16, 1996

IrDA Link Management Protocol, v1.1, January 23, 1996

IrDA Tiny TP: A Flow Control Mechanism for Use with Ir'LMP, v1.1, October 20, 1996

IrDA IrCOMM: Serial and Parallel Port Emulation over IR, v1.0, November 7, 1995

IrDA Object Exchange Protocol (IrOBEX), January 22, 1997

Minimal IrDA Protocol Implementation (IrDA Lite), v1.0, November 7, 1996

IrDA Serial Infrared Physical Layer Measurement Guidelines, v1.0, January 16, 1998

IrDA Interoperability Test Plan and Process, v1.2, September 28, 1998

The IrDA Standards for High-Speed Infrared

Communications

Jain Millar As more data communications products, such as printers and laptop PCs, are

Martin Beale released with infrared capability, support for a core set of IrDA standards has

Bryan J. Donoghue strong support from many manufacturers because, among other things, they

Kirk Wi Lindstrom want to ensure that their products will interoperate in a transparent and

Stuart Williams user-friendly manner.

Atticle 2 ¢ © 1998 Hewlett-Packard Company

’I:e use of infrared techniques for data communications has been around

for several years, and by 1993 several commercial products were available

with this capability. However, each company has tended to have its own

infrared standard, and although devices from the same manufacturer could

communicate with each other, competing systems tended not to be inter-

operable. Examples of such proprietary infrared systems include Hewlett-

Packard’s HP SIR (serial infrared), Sharp’s ASK systems, and General Magic's

MagicBeam. The resulting confusion in the marketplace meant that users

viewed infrared as having only limited utility.

On June 28, 1993, the Infrared Data Association (IrDA) had its first meeting

with the purpose of establishing a ubiquitous, low-cost, point-to-point serial

infrared standard. Some 50 representatives from 20 interested companies were

expected, but over 120 people representing more than 50 companies actually

attended. It was clear that the industry was interested in developing a standard

that would allow the true value and utility of infrared to be realized. At the

culmination of this process—and due in no small part to the enthusiasm and

spirit of cooperation of the participating companies—the first IrDA standards

were published, just one year and two days after the initial meeting.

To date, IrDA has specified the physical and protocol layers necessary for

any two devices that conform to the IrDA standards to detect each other and

exchange data. The initial IrDA 1.0 specification detailed a serial, half-duplex,

asynchronous system with transfer rates of 2400 bits/s to 115,200 bits/s at a

0 February 1998 » The Hewlett-Packard Journal

range of up to one meter with a viewing half-angle of between 15 and 30 degrees (see Figure 1). More recently, IrDA has

extended the physical layer specification to allow data communications at transfer rates up to 4 Mbits/s.

Figure 1

Viewing angle specified in IrDA specification 1.0.

Transmitter - - Receiver

This paper presents details of the individual IrDA specifications, focusing specifically on the high-speed extensions that

allow data communications at up to 4 Mbits/s. The first section gives details of the objectives that resulted in the series

of IrDA specifications. The specifics of the user model and the technical requirements of the specification are also pre-

sented. Next the IrDA architecture is introduced, highlighting how the IrDA specifications together provide overall func-

tionality. The infrared physical-layer specification with particular emphasis on modulation format, packet framing, trans-

ceiver design, and clock recovery is discussed in the next section. The transceiver design for the HP HDSL-1100 IrDA

transceiver is also described in this section. The last section covers the protocol layers of the IrDA specifications. Finally,

IrDA’s current status is summarized.

IrDA Objectives

When IrDA was established, it set for itself the following objective:

“To create an interoperable, low-cost infrared data interconnection standard that supports a walk-up, point-to-point user

model” that is adaptable to a broad range of mobile appliances that need to connect to peripheral devices and hosts.”

IrDA chose the short-range, walk-up, point-and-shoot directed infrared communications model for two main reasons.

First, it was perceived that the initial target market for IrDA-enabled devices would be the mobile

professional who is also a computer user. The environment for the use of such devices would be in a typical working

environment in which the majority of stationary devices, such as printers or computers, would be located within the

user’s own reach space, on the desktop or in the immediate vicinity. Typical use of such devices would consist of short,

conscious interactions such as file transfer or printing. Such use scenarios do not require the devices to be continually

connected to each other, and a directed model of communications was adopted in which the user consciously points the

infrared device at the target.

Previously, mobile professionals might connect their laptops to various peripherals using parallel or serial cables.

Connecting such devices using LAN connections might also be possible if cost were not an issue. However, a problem

arises when the user becomes mobile—for example, when visiting customers in their office. Setting up a laptop at the

customer office to achieve even simple tasks, such as printing or file transfer, would more than likely require significant

reconfiguration. IrDA aimed to change this by providing standards for ubiquitous access to such devices.

Second, IrDA chose this communications model to minimize cost. The use of a single LED and photodiode in the trans-

ceiver enables an extremely low-cost implementation. The model simplifies the protocol software by restricting the

number of visible devices, hence limiting the contention and interference between IrDA devices. The limited range also

allows reuse of the infrared medium, allowing multiple pairs of devices to communicate at the same time.

The phrase “walk-up, point-to-point user model” refers to the fact that to ensure data transfer between devices with infrared capabilities, they must be placed close together (<2 m)

with their infrared transceivers pointed at one another.

Atticle 2 o © 1998 Hewlett-Packard Company o February 1998 » The Hewlett-Packard Journal

Glossary

Cell. A symbol in PPM.

Chip. A pulse within a symbol (cell) in PPM.

ENDEC. The encoder-decoder used in the IrDA physical layer.

HTTP Hypertext Transfer Protocol.

HDLC. A bit-oriented, synchronous High-level Data Link Control protocol that applies to the message-passing (data link) layer of the

Open Systems Interconnect (OSI) model for computer-to-computer communications.

JAS. The information access service maintains information about the services available on the host device and provides services that
allow access to information on remote devices.

IrCOMM. IrDA specification for the emulation of serial and parallel port communications.

IrLAN. IrDA specification for accessing a LAN over an infrared medium.,

IrLAP. IrDA specification for Link Access Protocol. This document specifies an HDLC-based protocol for controlling access to the
infrared medium,

IrLMP. IrDA specification for Link Management Protocol. This protocol provides the LM-MUX and LM-IAS services.

IrOBEX. IrDA specification that defines the protocol for generic object exchange in an IrDA-enabled device.

IrPHY. The specification that describes the physical layer properties of the IrDA standard.

LM-IAS. The Link Management Information Access Service allows a pair of IrDA devices to interrogate each other to determine the
services available on each device.

LM-MUX. The Link Management Multiplexer allows any pair of IrDA devices to simultaneously and independently use a single IrDA
connection between themselves.

LSAP. Link Service Access Ports are address fields that uniquely identify applications on the source and destination devices.

LSAP-SEL. Link Service Access Port Selector.

PPI. Pulse position modulation.

SIR. Serial infrared.

Tiny TP. Lightweight transport protocol specification.

IrDA aimed to allow its standards to support a wide class of computing devices and peripherals that might be used by

mobile professionals. These devices would range from very sophisticated, high-power notebook or laptop personal com-

puters, through palmtop computers and personal digital assistants, to simple single-function devices like electronic busi-

ness cards or phone dialers. Target peripheral devices would include conventional computer-oriented devices like print-

ers and modems, as well as automatic teller machines and public and mobile telephones. It was also envisaged that IrDA

would enable new classes of devices such as information access points.

To target such a broad range of devices, a set of general requirements was placed on any prospective standard. These

requirements included:

= Low cost

m Industry standard

= Compact, lightweight, low-power

Atticle 2 o © 1998 Hewlett-Packard Company o February 1998 ¢ The Hewlett-Packard Journal

= Intuitive and easy to use

= Noninterfering.

Using these requirements, the IrDA committee developed a series of standards aimed at providing ubiquitous, low-cost,

directed infrared communications for all classes of mobile computing devices. In IrDA's vision of the world, the user of

such devices would be able to roam across international boundaries using IrDA communications to access information,

computing, and communications services in a uniform and transparent manner. The days of the mobile computer user

travelling the globe with a multitude of modem, serial, and parallel cables, including adapters, will be gone.

The remainder of this paper presents details of the standard IrDA has put in place to achieve this vision.

The IrDA Architecture

After the initial marketing requirements had been specified, the technical committee within IrDA moved quickly towards

the development of the initial standards. In April 1994, the first IrDA standard was published covering the physical layer

properties. This document, the Infrared Physical Layer (IrPHY) specification,? describes an infrared transmission system

based on a UART modulation strategy. The document specifies the necessary parameters to provide an asynchronous

half-duplex serial communications link over distances of at least one meter at data rates between 2400 bits/s and

115.2 kbits/s. The cone half-angle of the infrared transmission is specified as being at least 15 degrees, but no more

than 30 degrees. The IrPHY specification was quickly followed with the publication of the Infrared Link Access Protocol

(IrLAP) in June 1994.3 IrLAP specifies an HDLC-based protocol for controlling access to the infrared medium and provid-

ing the basic link-level connection between a pair of devices.

During the development of IrPHY and IrLAP, it was realized that some additional functionality was required in addition to

the ability to provide a single connection between a pair of devices. The Infrared Link Management (IrLMP) layer was

conceived.? This layer has two primary functions.

First, it provides the mechanism by which multiple entities within any pair of IrDA devices can simultaneously and inde-

pendently use the single Ir(LAP connection between those devices. This function is called the link management multi-

plexer (LM-MUX).

Second, it provides a way for entities using the IrDA services to discover what services are offered by a peer device and

to register available services within the local device. This link management information access service (LM-IAS) consid-

erably benefits the ease of use of portable devices, allowing pairs of devices to interrogate each other to discover infor-

mation about the applications within each device.

These three standards—IrPHY, IrLAP, and IrLMP—form the core of the IrDA architecture, and all are required for a de-

vice to be IrDA-compliant. Since the core documents were published, several extensions have been added. The current

complete IrDA architecture is shown in Figure 2.

In October 1995, optional extensions to the physical layer, adding data transmission speeds of up to 4 Mbits/s, were ac-

cepted by the IrDA committee. These changes resulted in the IrDA IrPHY 1.1 specification.® The IrLAP and IrLMP docu-

ments have also recently been updated to version 1.1 to incorporate various improvements that resulted from practical

experience in implementing and using the IrDA protocols.®7

In addition to the base standards, IrDA has specified a protocol called Tiny TP.3 This protocol is an extremely lightweight

transport protocol designed to provide application-level flow control as well as segmentation and reassembly of applica-

tion data units. This protocol has proved to be useful and is now implemented by most applications that support the IrDA

architecture.

To complement the functionality of the main components of the IrDA architecture, several application-level protocols

have been and are in the process of being developed. These protocols are aimed at providing convenient and uniform

interfaces to the functionality of the IrDA protocols for both old and new applications.

Article 2 e © 1998 Hewlett-Packard Company o February 1998 e The Hewlett-Packard Journal

Figure 2

The IrDA architecture.

Applications

ILMP
Information
Access
Service
(LM-IAS)

Infrared Link Access Protocol (IrLAP)

IPHY 1.0 IrPHY 1.1
SIR 2400 to 115,200 SIR 1.152 Mbits/s

Bitsls 4PPM 4.0 Mbits/s

The original target for IrDA was cable replacement. The need for a protocol to support the redirection of serial and paral-

lel cable traffic resulted in the I'lCOMM serial and parallel port emulation protocol specification.? This protocol enabled

the redirection of conventional serial and parallel ports over the infrared medium, allowing many existing applications to

operate unchanged over an IrDA link. Another area seen as a suitable application of IrDA, particularly as a result of the

high-speed extensions, is wireless access to local area networks. The protocol I'LAN was developed to allow an IrDA-

enabled device to access a LAN over the infrared medium.!? The protocol, in combination with an IrLAN-compatible

LAN access device, provides the IrDA device with the equivalent functionality of a LAN card and the advantages of

wireless connectivity.

Both IrCOMM and IrLAN address legacy-style applications. However, it is envisioned that many new applications will be

enabled by the IrDA standards. Using IrDA on low-end devices gives rise to the need for a flexible, lightweight informa-

tion exchange protocol suitable for devices with varying resource capabilities. A protocol for generic object exchange,

IrOBEX, is currently under development within IrDA.1! This protocol is based on HTTP (Hypertext Transfer Protocol)

but is more compact. When completed, IrOBEX will provide a device independent method for exchanging arbitrary units

of data between IrDA-enabled devices.

The IrDA Physical Layer

The IrDA physical layer is split into three distinct data rate ranges: 2400 to 115,200 bits/s, 1.152 Mbits/s, and 4 Mbits/s.

Initial protocol negotiation takes place at 9600 bits/s, making this data rate compulsory. All other rates are optional and

can be added if a device requires a higher data rate. The links are designed to be used in a line-of-sight, point-and-shoot

manner and hence have a modest minimum coverage of one meter, with a +15° viewing angle. This modest coverage is

advantageous, since it allows a low-cost, high-data-rate link to be produced in a small package.

2400-to-115,200-bit/s Link

This is based on the HP-SIR link developed for HP calculators.'2 All IrDA-compliant devices implement this type of link

since initial protocol negotiation takes place at 9600 bits/s. The architecture of the link (Figure 3) is designed for easy

implementation and low cost. Hardware costs can be kept to a minimum by implementing the protocol, packet framing,

Article 2 o © 1998 Hewlett-Packard Company o February 1998 « The Hewlett-Packard Journal

and CRC calculation in software on the host processor. Bytes of data from the processor are converted to a serial data

stream by a UART (universal asynchronous receiver-transmitter). Since many systems already include a UART for RS-232

communications, this places no extra cost burden on the system. Only the ENDEC (encoder-decoder) and transceiver

represent an additional hardware cost for the system.

Figure 3

The 2400-to-115,200-bit/s link architecture.

Host
Processor

Encoder/
Decoder:
{ENDEC)

Transceiver

Infrared receivers contain a high-pass filter to remove background daylight. This high-pass filter forces the use of encod-

ing on the link to ensure that long strings of zeros or ones are not lost in transmission. The encoding used on this link is

return-to-zero (RZ). Zeros are represented by a pulse of 3/16-bit duration, and ones by the absence of a pulse (Figure 4).

For example, 3/16 of a pulse width at 115,200 bits/s is 1.6 us. The code is power-efficient since infrared light is only trans-

mitted for zeros. The tall narrow pulse has better signal-to-noise ratio performance than a short wide pulse of the same

energy.

Figure 4

The coding on a 2400-to-115,200-bit/s link.

Data Bit 0 1

IR Signal l l

The 1.152-Mbit/s Link

At speeds above 115,200 bits/s, packet framing and CRC generation and checking become a significant burden to the host

processor. At 1.152 Mbits/s, these tasks are performed in hardware by a packet framer (see Figure 5). The packet format

is slightly different from that used in the 2,400-to-115,200-bit/s link, but the line code remains similar.” Higher-level proto-

cols are less processor intensive than packet framing or CRC generation and are still implemented in software on the

host processor.

The 4-Mbit/s Link

The 4-Mbit/s link architecture is shown in Figure 6. As in the 1.152-Mbit/s link, packet framing and CRC generation and

checking are performed in hardware to relieve the burden on the host processor, while higher-level protocols are imple-

mented in software on the host processor. The link uses a new encoding scheme (described below) and a new, more ro-

bust packet structure. A phase-locked loop replaces edge detection as the means of recovering the sampling clock from

the received signal. The packet framer, ENDEC, and phase-locked loop are more complex than the UART and ENDEC in

the 2400-to-115,200 bit/s link. However, this added complexity need not be expensive. The components are specified in a

Atticle 2 o © 1998 Hewlett-Packard Company ° February 1998 e The Hewlett-Packard Journal

Figure 5

The 1.152-Mbit/s link architecture.

Host
Processor

Encoder/
Decoder

Dl

¢
Transceiver

Figure 6

4-Mbit/s link architecture.

Host
Processor

Packet
Framer

Encoder/
Decoder

)
G

Transceiver

hardware description language and can be added quickly and inexpensively to one of the host system’s ASICs. PC chip-

sets including the 4-Mbit/s hardware are already available from leading semiconductor manufacturers.

Coding and Packet Format. Pulse position modulation (PPM) was chosen as the line code for the 4-Mbit/s link. Data is

transmitted within a PPM signal by varying the position of a pulse (referred to here as a chip) within a symbol (referred

to here as a cell). The PPM modulation for the 4-Mbit/s link allows one chip to be set in one of four possible positions;

thus it is known as 4PPM. Since a chip can be set in one of four possible positions, four different messages can be sent

within one cell, allowing two bits of data to be encoded per cell. Figure 7 shows the four possible messages that can be

transmitted by 4PPM.

Figure 7

4PPM message encoding.

Cell Data

00

N S B

0

T 1

]

T 1

n

| I —

Cell

Chip Set

Chip Reset

Pulse position modulation has many properties that make it attractive for use on the free-space optical channel. One of

the main properties is the sparseness of the code. Sparse code allows high peak powers to be employed for set chips

while maintaining a reasonable average power. The eye-safety rules stipulate a maximum average optical power, and

LEDs tend to be average-power-limited at moderate duty cycles.

Article 2 « © 1998 Hewlett-Packard Company February 1998 e The Hewlett-Packard Journal

Pulse position modulation also contains significant and regular timing content, which facilitates synchronous clock

recovery using a phase-locked loop. It is a modulation format that has very little dc content and can be high-pass filtered

at 100 kHz, avoiding interference generated by fluorescent lighting without adversely affecting the receiver's eye diagram.

A particularly interesting feature of PPM—one that had important ramifications in the choice of end delimiters—is its

ability to detect line code errors.

Higher orders of PPM give lower duty cycles and theoretically greater signal-to-noise ratio gains on the infrared medium.

Figure 8 illustrates the interesting relationship between signal-to-noise ratio gain achievable with various orders of PPM

and the required pulse width. It is interesting to note that the optimum order of PPM from a bandwidth efficiency

perspective would be 3PPM. This result might be of theoretical interest, but is fairly useless in a practical system. Since

the fastest bright LEDs have a rise time of around 40 ns, and the rise time of an LED is proportional to the pulse width,

the use of high-order PPMs at 4 Mbits/s becomes impractical. The decision to adopt the order four for the PPM was moti-

vated by knowledge of the range of duty cycles over which LEDs are peak-power-limited, the rise and fall time of avail-

able LEDs, and the frequent timing content provided at order four.

Figure 8

The signal-to-noise ratio gain and pulse width trade-off.

8T 1 Pulse Position Modulation
g 4, (PPM) Order

E l:‘12"10 a S
2w =)
] o 1

S O s
2 o
S 5
2 47 o 2
=2 4
= o g
5 3 @
T 2T o
2
a
S

2
0 ; — " 4 + 4 +

00 01 02 03 04 05 06 07 08 09 10 11

Pulse Width Relative to 4PPM

Packet Format. The 4-Mbit/s physical layer packet has distinct features that perform a useful and well-defined role (see

Figure 9). A preamble allows dc balance to be attained, and more important, permits the phase-locked loop to achieve

chip-level synchronization. The length of the preamble was considered carefully such that the preceding two goals could

be achieved without a significant impact on efficiency. The start and stop delimiters provide cell and frame synchroniza-

tion and were chosen so as not to compromise overall packet robustness or adversely affect the receiver eye diagram. To

distinguish the preamble and the end delimiters from the frame body, these fields contain code violations. The body of

Figure 9

The 4-Mbit/s packet format.

TR I
| L | | J J

64 Cells 8Cells 2= n=<2050Bytes 4Bytes 8Cells

Article 2 o © 1998 Hewlett-Packard Company o February 1998 e The Hewlett-Packard Journal

the packet is 4PPM-coded and has a 32-bit cyclic redundancy check (CRC) field appended to it. The choice of a 32-bit

CRC provides a guaranteed level of robustness to undetected data errors over the range of error rates expected on a free-

space infrared channel. The CRC is performed on the data bits rather than on the PPM-encoded chips.

Error Detection and Delimiters. A decoder may choose to exploit the error detection capabilities of 4PPM. The only

portions of the packet allowed to contain violations are the preamble and the frame delimiters. If a decoder finds code

violations within the frame body or CRC portion of the packet, it can flag that packet as being corrupted. In the same way

that a sufficient number of carefully positioned errors can produce a correct-looking CRC for a corrupted packet, there

are some error patterns that a 4PPM decoder cannot detect. An example is shown in Figure 10.

Figure 10

An undetectable 4PPM error.

Transmitted Corrupted Received
Cell Cell Cell

Error N
Positions S l y ‘ [s

0 10 A i

Because of some spurious The corrupted cell obeys
interference, cell data is PPM rules, but the error

erroneously changed from is undetectable by the
00to 10. 4PPM cell decoder.

The role of the CRC is to detect those error patterns that the PPM cell decoder cannot detect. Owing to the combined

distance structure of the CRC and the pulse position modulation, the packet can be made very robust to withstand either

random or burst errors at any signal-to-noise ratio.

A more worrisome error mechanism that had to be considered was the possibility of the corruption of the frame delimiters.

The frame delimiters are not in themselves protected by the CRC. If the situation arose whereby a false Stop delimiter

appeared in a valid position within the data and CRC portion of the packet, the packet would be protected solely by the

scrambling effect of the CRC. In this case, a corrupted packet would be flagged as correct with a probability of (0.5)32.

Thus, it is important to ensure the unlikelihood of either random or burst errors causing a false delimiter to appear

within the data portion of the packet. This is achieved by choosing delimiters with a large Hamming distance from the

data (or shifted versions of the data, to ensure serial uniqueness) and with a sufficient number of chips such that “bursty”

channel error models can be tolerated. A further constraint on the delimiter choice is that delimiters must not adversely

affect the eye diagram of the complete packet. The lack of long strings of contiguous set or reset chips within the

4-Mbit/s delimiters allows this goal to be attained. The delimiters chosen ensure packet robustness at any signal-to-noise

ratio, for any length of packet, over random and burst-error models—all without affecting the receiver eye diagram.

Clock Recovery. The UART-style clock recovery of the 2400-to-115,200-bit/s link uses a single signal edge to set the phase

of the recovered sampling clock. This inevitably gives rise to phase jitter on the recovered clock and a consequent signal-

to-noise ratio penalty. The phase-locked loop used by the 4-Mbit/s link generates a sampling clock with much less jitter

because it uses timing information from many signal edges to set the phase of the clock. An analog phase-locked loop

could have been used for clock recovery and might have achieved a low phase jitter, but it would have been unable to

achieve the rapid phase lock of a digital phase-locked loop. Rapid phase lock is important in a packetized data system,

because it determines the length of the training sequence, or preamble, required at the start of every packet to allow the

phase-locked loop to lock.

Article 2 o © 1998 Hewlett-Packard Company o February 1998 e The Hewlett-Packard Journal

The lock time is dictated by the accuracy with which the nominal frequency of the phase-locked loop’s variable oscillator

can be set. The nominal frequency of the variable oscillator in an analog phase-locked loop is highly variable, since it is

determined by the (usually poor) tolerance of the resistors and capacitors. By contrast, the nominal frequency of the vari-

able oscillator in a digital phase-locked loop can be locked to a crystal reference with a tolerance of less than 100 ppm.

Implementations of digital phase-locked loops have the additional advantage that they can be quickly and easily ported

between ASIC designs. The architecture of a typical digital phase-locked loop for the 4-Mbit/s link is shown in Figure 11.

Figure 11

4-Mbit/s digital phase-locked loop.

"Filter
Up

x_signal Phase
Detector

x_chips Three-Bit
Sampler Free-Running

The phase detector is a state machine that compares the edges in the received signal (rx_signal) with those of the recov-

ered clock (rx_clock). Rising edges only occur in rx_signal at PPM chip boundaries. Rising edges of rx_clock should occur

halfway between chip cell boundaries. If rx_signal is earlier than expected, then the phase detector produces a Down sig-

nal, thereby advancing the phase of rx_clock. If rx_signal is later than expected, then the phase detector produces an Up

signal.

The three most significant bits of the 8-bit counter set the phase of rx_clock. The five least significant bits ensure that the

counter acts as a low-pass filter, since many Up and Down signals are required to change the phase of rx_clock. The three-

bit free-running counter and the comparator together act as a variable phase oscillator. All blocks within the phase-

locked loop are clocked by the same system clock. The system clock can be either 40, 48, 56 or 64 MHz, the choice being

set by the rollover point of the three most-significant bits of the 8- and 3-bit counters (100, 101, 110, or 111). A 40-MHz

system clock means that rx_clock should be very granular, with only five possible phase steps within a chip period. The

effective number of phase steps is, however, doubled by making use of both the positive and negative edges of the sys-

tem clock in the phase detector and sampler. The choice of whether to use positive or negative edges can be made by

examining the fourth most-significant bit of the 8-bit counter.

The fast lock of the digital phase-locked loop is further aided by using a dual control loop within the digital phase-locked

loop. A lock state machine within the phase detector decides whether the digital phase-locked loop is in or out of lock by

examining the average deviation of the rx_clock edges from the rx_signal edges. If the digital phase-locked loop is out of

lock, then multiple Up or Down pulses are generated for each edge in rx_signal to ensure rapid lock. Once locked, only

single Up or Down pulses are generated since multiple pulses would increase phase jitter on rx_clock.

Atticle 2 e © 1998 Hewlett-Packard Company 0 February 1998 e The Hewlett-Packard Journal

The Hewlett-Packard HSDL-1100 IrDA Transceiver

The HP HDSL-1100 from HP’s Communication Semiconductor Solutions Division is the world’s first fully IrDA-compliant

transceiver capable of operating at all IrDA data rates from 2400 bits/s to 4 Mbits/s. The HSDL-1100 fits within the same

small package as its predecessor, the HSDL-1000, which operated at data rates from 2400 bits/s to 115,200 bits/s. The

small package size available for pins, IC, passive components, and heat dissipation imposed design constraints on the

complexity of the transceiver. The IC uses a low-density bipolar in-house process, which is low in cost and allows quick

turn times on wafers for IC development.

Transmitter design was straightforward. However, the multiple data rates, line codes, and large dynamic range made

receiver design much more challenging. The receiver’s dual-channel architecture is shown in Figure 12. A shared p-i-n

diode detects all infrared signals with a modulation frequency between 40 kHz and 6 MHz. An amplifier boosts this signal

before it is split into separate receiver channels. IrDA signals at 2400 to 115,200 bits/s pass through the serial infrared

(SIR) channel*, while 1.152-to-4-Mbit/s signals pass through the fast infrared (FIR) channel. The lower bandwidth of the

SIR channel (40 to 300 kHz) means lower noise and allows the SIR channel to meet the IrDA 4 uW/cm? sensitivity re-

quirement. The higher-bandwidth (40 kHz to 6 MHz) FIR channel has higher noise, but still meets the 10 uW/cm? sensi-

tivity requirement for 1.152-to-4-Mbit/s IrDA links. Since the different data rate IrDA links overlap in their modulation

spectra, the received signal will appear on both channels. The ENDEC relies on information provided by the protocol

to ensure that it listens on the correct channel.

Figure 12

The HDSL-1100 receiver architecture.

Low-Pass Filter
300 kHz

» SIR Data

Vin
p-i-n Diode

Bandpass Filter
40 kHz to 6 MHz

. b ® FIR Data

Peak
Detector

p-i-n Diode
Biasing

Averaging
Circuit

* At low rates, such as 2400 or 9600 baud, only the leading edge of the signal passes through the 40-kHz to 6-MHz bandpass filter. The signal is still correctly decoded since the ENDEC is

able totolerate received SIR pulses as short as 1to 4 ps.

Article 2 o © 1998 Hewlett-Packard Company 11) February 1998 » The Hewlett-Packard Journal

The receiver converts signals from an analog to a digital form by comparing them with a threshold voltage. The two chan-

nels have different threshold detection circuits to meet the different requirements for the signals. The SIR channel has a

fixed threshold set at the level of the weakest received signals. Although the fixed threshold tends to extend the duration

of high-level pulses, the line code for the 2400-to-115,200-bit/s ENDEC is tolerant of pulses that extend to five times their

nominal width. The 4-Mbit/s ENDEC is far less tolerant of pulse extension, so a dynamic threshold is required on the FIR

channel. The dynamic threshold tracks the 50% level between the peak extensions of the 4PPM signal. A peak detector

tracks the 100% level of the signal and an average circuit tracks the 25% level. The 50% threshold level is derived from a

2R-R voltage divider connected to these levels. Between packets, the dynamic threshold drops to zero. This would allow

the FIR_Data output to “chatter” on noise or on feedback between the output pin and the p-i-n diode. The 1.152-Mbits/s

ENDEC is intolerant of the extra pulses produced by such chatter, so a squelch circuit was added to switch off the

FIR_Data output at low signal levels. The dynamic threshold also takes time to settle at the start of a packet, which causes

some of the packet’s initial infrared pulses to be lost or distorted. While this would be disastrous for the

2400-to-115,200-bit/s link, the 1.152- and 4-Mbit/s packets include a preamble to allow the receiver to settle before decod-

ing data.

Another challenge for receiver design was the dynamic range of infrared signals. IrDA specifications allow received

signal strength to vary between 4 pW/cm? and 500 mW/cm?. This is a dynamic range of 51 dB. Since the p-i-n diode is a

square law detector, this dynamic range doubles to 102 dB within the receiver. The receiver achieves this dynamic range

by allowing the signal to be clipped while maintaining the timing of the signal. The impedance of the p-i-n diode biasing

circuit decreases with signal level, reducing the signal voltage and the receiver amplifier’s limit without saturating. The

p-i-n diode has also been carefully designed to ensure that the induced signal decays rapidly once an infrared pulse

disappears.

The IrDA Protocol Layers

The Infrared Link Access Protocol

IrLAP is the IrDA protocol that provides the basic link layer connection between a pair of IrDA devices. It is based on the

HDLC protocol providing functions like connection establishment, data transfer, and flow control.13:14 However, IrLAP

has significant additional features as a result of the specific properties of the infrared medium.

The infrared medium over which IrLAP is required to operate is a point-to-point, half-duplex medium. While the narrow

cone angle of IrPHY limits the number of other devices that can be seen, it does increase the probability of hidden

devices. In such a situation, one device may see many other devices. However, it does not follow that those devices

will see each other. This can result in collisions where transmissions from devices hidden from each other may overlap,

resulting in the inability of the receiving device to decode those frames correctly. The characteristics of the infrared

medium also result in there being no reliable way to detect transmission collisions. Conventional carrier sensing with

collision-detection protocols would therefore be unsuitable, and IrLAP provides a mechanism for ensuring contention-

free access to the medium, at least during data transfer.

The IrLAP has three distinct phases of operation: link initialization, nonoperational mode, and operational mode. Non-

operational and operational modes are distinguished by the absence or presence of a connection with another device.

During link initialization, the IrLAP layer chooses a random 32-bit device address. This address is randomly chosen to

negate the need to select and maintain fixed device addresses for all IrDA devices. Although it is unlikely that two or

more devices within range of each other will choose the same address, procedures are defined to detect and resolve

address collisions. After the link is initialized, the IrLAP layer enters nonoperational mode.

Article 2 e © 1998 Hewlett-Packard Company e February 1998 The Hewlett-Packard Journal

The nonoperational mode is derived from HDLC'’s normal disconnect mode (NDM). In this mode, all devices contend for

the medium. To do this, each device must check that the medium is not busy before transmission. This is achieved by

listening for activity—that is, listening for physical layer transitions for at least 500 ms. Transmissions in the normal dis-

connect mode use link parameters that can be supported by all IrDA devices at a rate of 9600 bits/s. In this mode, the

device will initiate device discovery, address resolution (if required), and connection establishment.

Once the connection has been established, the IrLAP layer moves into the operational or, in HDLC terms, normal re-

sponse mode. This mode is an unbalanced mode of operation in which one device assumes the role of primary station

and the other assumes a secondary role. This is the phase in which information is exchanged under control of the pri-

mary station. The link parameters are negotiated during the connection setup procedure and remain constant during the

connection. During this phase, all other devices within range of either the primary or secondary stations remain idle in

the normal disconnect mode. The two communicating devices therefore have unrestricted access to the medium for the

duration of the connection. Once the information has been transferred, the link is disconnected and the device returns to

the normal disconnect mode. The flow of procedures for the IrLAP layer is shown in Figure 13.

Figure 13

The IrLAP procedure flow.

Start

|
Device

Discovery
Information
At Disconnect

Address
Resalution

Device Discovery and Address Resolution. The discovery procedure is the process an IrDA device uses to determine

whether or not there are any devices within communications range. In doing so, the device discovers the address of any

device within range, the version number of the IrLAP protocol operating in each device, and some discovery information

specified by the IrLMP layer in each device. The discovery procedure is controlled by the initiating device, which divides

the discovery process into equal periods or time slots. The slotted nature of the discover procedure minimizes the likeli-

hood of collisions when there are multiple devices within range.

After waiting for a period of 500 ms (normal disconnect mode rules), the initiating device starts the discovery procedure

and broadcasts frames marking the beginning of each slot. On hearing the initial discovery slot (which also details the

number of slots in the discovery process: 1, 6, 8 or 16), a device randomly selects one of the slots in which it will respond.

When the device receives the frame marking its chosen slot, it transmits a discovery response frame. All frames in the

discovery procedure use the HDLC unnumbered format of type XID (exchange identification).” An example of the

discovery process is shown in Figure 14.

Figure 14 shows a three-device scenario in which device A is within range of devices B and C. Device A initiates the

discovery process by transmitting a discovery XID command frame which, in this case, indicates that this is a six-slot

discovery process and that this is the initial slot. Device A continues to transmit discovery command XID frames indi-

cating the appropriate slot number. The final frame, after slot 6, is indicated by a slot number 0xFF. The final slot also

contains information about the initiating device.

In this context XID is a type of HDLC frame as specified in the ISO standard

Article 2 ¢ © 1998 Hewlett-Packard Company @ February 1998 e The Hewlett-Packard Journal

Figure 14

The discovery procedure.

Discovery
9 Response ‘

Discovery <—
Request
—_— Discovery

Response @
-—

Discovery Command from Device A

Slot Number

' XiD[o] XID[} XID[2] XID[3] XID[4] XID[S] XID[FF}

aH H H BH H H H
% + 1§ i il L ¥ |

DR - e o
: X\DRosponse . : .

o fromDeviceB ! = ! it
[, & i V XID Response i :
o ' ' from Device C . :

) Slot1 | Slot2 | Slot3 | Slotd | Slot5 | Sloté |

t:i = Frame

When the initial discovery XID command frame is received, devices B and C randomly choose slots in which to re-

spond—in this example, slots 2 and 4. Device B then waits until it hears the discovery XID command indicating slot 2,

and responds with a discovery XID response frame containing information about itself. Similarly, device C transmits a

response during slot 4. Once the discovery process is over, all devices have the address and other information of all the

devices within range: that is, device A has information about devices B and C, while devices B and C each have knowl-

edge of device A. However, devices B and C are mutually hidden and as a result have no information about each other.

This discovery information is passed to the upper layers whose responsibility it is to determine if there are any address

collisions that need to be dealt with.

Should any of the devices that participated in the discovery process have duplicate addresses, then an address resolution

process can be initiated. Address resolution follows a procedure similar to the discovery process, except that the device

detecting the address conflict initiates the procedure, and resolution involves only the devices that have conflicting ad-

dresses. In this case, the initiating device transmits an address resolution XID command directed at the conflicting ad-

dress. Devices with this address select another random address and a slot in which to respond. The initiator transmits

the slot markers as before, and the previously conflicting devices respond in the appropriate slot. Once the process is

over, each device should have a unique address. In the unlikely event that an address conflict still exists, the procedure

can be repeated.

Connection Establishment. Once the discovery and address resolution processes are complete, the application layer may

decide that it wishes to connect to one of the discovered devices. To connect, the application layer will issue a connec-

tion request which will ultimately result in the appropriate IrLAP service primitive being invoked. The IrLAP layer con-

nects to the remote device by transmitting a set normal response mode (SNRM) command frame with the poll bit set.

This command informs the remote device that the source wishes to initiate the connection and the poll bit indicates

that a response is required. Assuming the remote device can accept the connection, it responds with an unnumbered

acknowledge (UA) response frame with the final bit set. This indicates that the connection has been accepted. Under

normal circumstances, the device that initiates the connection (transmits the set normal response mode) will become the

Atticle 2 « © 1998 Hewlett-Packard Company 0 February 1998 e The Hewlett-Packard Journal

master, or primary, device, and the other device will become the slave, or secondary device. An example of connection

establishment is shown in Figure 15.The notation used in the frames in Figure 15 has the general form I(x,y) and

RR(y), where x is the sequence number of the information frame and y is the sequence number of the next frame the

source device expects to receive from the destination device.

Figure 15

Connection establishment, information exchange, and disconnect. = = control Frame
DISC = Disconnect H

. I = Information Frame
Primary Secondary F = Final Bit Set ()

SNRM UA P = Poll Bit
—_— -— o RR = Receiver Ready

SNRM = Set Normal Response Mode
UA = Unnumbered Acknowledge

SNRM,P RR[0],P RR[3L,P 10,31 N3P RR[3L,P Disc,P

A H = = e I H = .
‘ I

UAF : I[0,0] 1[1,0] 1[20]F RR[0LF RR[2],F UAF :

B H o Pl) H H Hoo
' '
' '

Negotiated (3600 Bits/s to 4 Mbits/s) 9600 Bits/s —=
9600 Bits/s

The connection establishment takes place in normal disconnect mode (9600 bits/s), and once this is completed, the two

devices will be in normal response mode. While in normal response mode, the devices can exchange data at any IrDA

defined rate. However, not all IrDA devices will support all IrDA data rates or link parameters. It is therefore necessary

for the devices to negotiate the parameters for normal response mode during connection setup. IrDA has defined several

link parameters that can be negotiated:

u Data rate

® Maximum turnaround time

m Data size

® Window size

Number of additional start of frame symbols (BOFs)

Minimum turnaround time

m Link disconnect threshold time.

Data rate defines the data transfer rate during normal response mode (9600 bits/s to 4 Mbits/s), while maximum turn-

around time defines the length of time either device may transmit before giving the other device a chance to transmit

(50, 100, 250, or 500 ms). Data size determines the maximum length of the data field in an information frame (64 to

2048 bytes), and, in combination with the retransmission window size, which defines the number of outstanding frames

that may be unacknowledged, allows devices with only limited resources to restrict the rate at which they will receive

data. Number of additional BOFs and minimum turnaround time relate to physical layer restrictions, while link discon-

nect threshold time determines how long a device will wait without receiving a response from another device before

assuming the link has failed and informing the upper layer that the link has disconnected.

Atticle 2 o © 1998 Hewlett-Packard Company @ February 1998 ¢ The Hewlett-Packard Journal

Well-defined rules exist that ensure that after the set normal response mode-UA exchange has been completed, both de-

vices will know the negotiated normal response mode parameters. Once both devices are in normal response mode, the

primary device polls the secondary device by transmitting a receiver ready (RR) frame with the poll bit set, thereby initi-

ating the information exchange phase.

Information Exchange and Link Reset. The information exchange procedure operates in a master-slave mode in which

the primary device controls the secondary device’s access to the medium. The primary device issues command frames to

the secondary device which responds with response frames. To ensure that only one device can transmit frames at any

one time, a permission-to-transmit token is exchanged between the primary and secondary devices. The primary device

passes the permission-to-transmit token to the secondary by sending a command frame with the poll bit set. The second-

ary device returns the token by transmitting a response frame with the final bit set. The secondary device can only retain

the token while it is transmitting data, and it must return it to the primary device if it has no data to transmit or if it

reaches the maximum turnaround time. The primary device, however, within the limits imposed by the maximum turn-

around time, can hold the token even if it has no data to transmit.

Although the physical layer has been designed to provide a low bit error rate channel, the dynamic nature of the infrared

connection results in a possibility that frames may be lost in transit because of corruption by noise. To cope with this, the

IrLAP protocol uses a sequenced information exchange scheme with acknowledgments. Should a frame be corrupted by

noise, the CRC will highlight this error and the frame will be discarded. At the IrLAP layer, this error will be detected by

virtue of the noncontiguous sequence numbers on the information frames. The IrLAP protocol implements an automatic

repeat request strategy in the same manner as HDLC with options of using stop and wait, go back to N, and selective re-

ject retransmission schemes.!3 This strategy allows the IrLAP layer to provide an error-free, reliable link to the IrLMP

layer. An example of an error-free information exchange between two devices is shown in Figure 15.

Under exceptional circumstances, however, it may not be possible for the IrLAP entities in each device to recover from

an error condition while maintaining the sequenced delivery of error-free information (I) frames. In this case, the I'LAP

entity is allowed to reset the link. This reset involves discarding any undelivered information and reinitializing the se-

quence numbers and timers for the link. Although this may result in the loss of data, which the higher-level layer must

deal with, it does allow the link to recover without the need for a total disconnection.

Connection Termination. Once the data exchange has taken place, the IrLAP link may be disconnected by either the pri-

mary or secondary devices. Should the primary wish to disconnect, it sends a disconnect command to the secondary de-

vice with the poll bit set. The secondary responds by returning an unnumbered acknowledge frame with the final bit set.

Both devices will now be in normal disconnect mode, and the default normal disconnect mode parameters (9600 bits/s

data rate) will apply. If the secondary wishes to disconnect, it transmits a request disconnect response with the final bit

set when it is polled by the primary. The primary will then respond by transmitting a disconnect command, and both de-

vices will be in normal disconnect mode. An example of a primary-initiated disconnection is shown in Figure 15. Once

the two devices are in normal disconnect mode, the medium is free for any other device to initiate the discovery, address

resolution, or connection procedures.

The Infrared Link Management Protocol

The Link Management Protocol (IrLMP) is layered on top of IrLAP, and has two main functions: application and service

discovery and multiplexing of application level connections over the single IrLAP connections. The IrLMP layer allows

individual service users (applications) to connect and exchange information with similar entities in the peer device, inde-

pendent of any other service users that may be using the IrLAP connection. The IrLMP layer provides multiple indepen-

dent channels to the I'LMP layer in the remote device. The IrLMP layer also provides a service with which applications

can locally register themselves and some significant parameters in an information base. Services are also provided that

enable those applications to access equivalent information in the information base of remote devices. Using this service,

an application does not need prior knowledge of the applications in a remote device. This is an extremely useful feature

for the kind of ad-hoc interactions typical of IrDA devices.

Article 2 o © 1998 Hewlett-Packard Company 0 February 1998 e The Hewlett-Packard Journal

The two main functions provided by IrLMP are split between two sublayers. The Link Management Multiplexer (LM-MUX)

provides the facilities for multiplexing application level connections over a an IrLAP connection between a pair of de-

vices. The Link Management Information Access Service (LM-IAS) provides the services necessary to allow applications

to discover devices and access the information in the information base of a remote device.

The Link Management Multiplexer. The LM-MUX adds two bytes of overhead to the IrLAP information frame, which are

primarily used for addressing the individual multiplexed connections. The address fields uniquely identify the link ser-

vice access points (LSAPs) in both the source and destination devices. Each LSAP is addressed by a seven-bit selector

(LSAP-SEL), and LSAP-SELs within the range 0x01 to 0x6F can be used by applications. LSAP-SELs 0x00 and 0x70 are

reserved for the information access service server and the connectionless data service respectively. The remaining LSAP-

SEL values, 0x71 to 0x7F, are reserved for future use. Connections between IrLMP service users are called LSAP connec-

tions, and although an LSAP may terminate other LSAP connections, there is only one LSAP connection between any pair

of LSAPs. All LSAP connections use the single Ir(LAP connection between the pair of devices.

Information Access Service. The information access service maintains information about the services provided by the

host device and provides services that allow access to the information base on remote devices. The information access

service allows devices to discover which services are available on the host device and provides the configuration infor-

mation necessary to access those services. As an example, the most common piece of information required is the LSAP-

SEL value, which tells where a particular service is located.

The information stored in the information base consists of a number of objects. Each object belongs to a specific class,

and there may be several objects of the same class in the information base. The class defines the attributes that are pres-

ent in each object, and these attributes can be assigned a particular value. The attributes of a class can be of type user

string, octet sequence, signed integer, or missing. Figure 16 shows an example of the information access service data-

base for a device offering three unique services.

Figure 16

Example information access service database.

Information Base

Object 0:Class Device {

DeviceName=“My Device”
Irursupportnoxfll !

Calendar

}
Object 1:Class Email {

IrDA:IrLMP:LSapSel=0x01

IrDA:IrLMP:InstanceNames!

¥ ; €
Object 5:Class Calendar {

IrDA:IrMP:LSapSel=0x02
IrDA:TinyTP:LSapSel=0x03

IXDAsIXLMP: mtmlflamt”filml” LSAP-SEL LSAP-SEL LSAP-SEL LSAP-SEL LSAP-SEL
0 1 2 3 4

}
~ Object 8:Class IXrOBEX { 1

IrDA:TinyTP:LSapSel=0x04 |
:trm\-xrm:mnuncwm-wwerfi

}

Atticle 2 © 1998 Hewlett-Packard Company o February 1998 e The Hewlett-Packard Journal

The example shows a device with three individual applications: e-mail, calendar, and IrOBEX (file transfer application).

The information base contains three objects associated with these applications. The required Object 0 is always present

within the information access service database, and it provides information about the device name and the version of

IrLMP the device supports. All other devices can address Object 0 to get this information. Objects in the information base

typically detail information about the services provided—for example, the LSAP-SEL where these services can be ac-

cessed. In the case of the calendar application, this service can be accessed using the Tiny TP flow-control mechanism

on LSAP-SEL 3, or directly on LSAP-SEL 2. The difference is encoded in the attribute name.

The IrLMP layer provides several service primitives to access information access service data. However, the only manda-

tory service is GetValueByClass. This service requires the service user to provide the class and attribute names of the ser-

vice it is interested in. The service returns a list of object identifiers and attribute values for all objects in the information

base with the requested class and attribute name. Referring to the example in Figure 186, if a peer device issued a

GetValueByClass with parameter Calendar for the class name and IrDA:IFLMP:LSapSel for the attribute name, the service

would return a single element list with the entry containing object identifier 5 and attribute value 2.

Tiny TP Flow Control Mechanism

Although the IrLAP layer does have provisions for flow control, its use can result in deadlock situations, particularly

where more than one Ir(LMP connection is operating. Such a deadlock situation can occur if an application in one device

is waiting for its peer application to send it some data before releasing its buffer space. However, another connection

may use up the remaining buffer space, causing the IrLAP layer to flow-control the link until buffer space becomes avail-

able. If both connections are waiting for data from the remote device before freeing the buffers, then clearly a deadlock

has occurred that cannot be resolved without some form of higher-level intervention such as a system reset.

To overcome this problem, IrDA provides the lightweight transport protocol called Tiny TP.8 Tiny TP adds a single byte

of overhead to each frame and provides a per-LSAP-connection credit-based flow control mechanism with the possible

segmentation and reassembly of service data units of up to 4 Gbytes in size. When a Tiny TP connection is initiated, the

maximum service data unit size is negotiated and some initial credit is extended to each connection endpoint. Sending

data causes the credit to be decreased by one, and periodically the receiver issues more credit. Without credit, the trans-

mitter cannot send any data. It must wait until such times as the receiver extends it some more credit. Using Tiny TP, a

device can ensure that credit is distributed among its applications, ensuring that the applications can communicate with-

out reducing the buffer space to such a degree that IrLAP flow control must be used.

IrDA has completed the core standards necessary to enable any mobile computing platform with ad-hoc, point-and-shoot

infrared communications from 2400 bits/s to 4 Mbits/s. Support for the IrDA platform from a wide variety of manufactur-

ers is now becoming apparent, as many products—ranging from printers to laptop PCs and PDAs to mobile phones—are

being released with IrDA capability. All these devices will have the ability to interoperate with one another should that be

required. With over 130 companies actively maintaining membership in IrDA, currently released IrDA-enabled products

represent only the tip of the iceberg. In the coming months and years, it is expected that more and more computing and

other devices will be released with built-in IrDA capability.

However, providing the hardware platform to support IrDA is only half the story. Current activity within IrDA is directed

at finishing off the IrDA series of standards to enable application-level developers to access the IrDA features in a uni-

form and efficient manner. The needs of legacy serial/parallel applications have been addressed with the IrCOMM stan-

dard. Legacy networking applications will be able to use the IrDA features implemented in the forthcoming IrLAN proto-

col. However, it is expected that a new class of applications will be developed with the express purpose of using the

unique features of IrDA-enabled devices. The IrOBEX protocol, when completed, will provide application programmers

with a generic method by which data can be exchanged with other applications without having to know the details of the

destination application. As an example, transferring a graphic to another PDA (which will display it) or to a printer

Article 2 ¢ © 1998 Hewlett-Packard Company @ February 1998 The Hewlett-Packard Journal

(which will print it) will be no different from the source application’s point of view. Alternately, a more flexible approach

to accessing the IrDA communications facilities will be to directly access them through the operating system’s applica-

tion programming interface. An example of this is the WinSock-style API to IrDA, called IrSock,!5 currently being devel-

oped for the Microsoft® Windows 95 operating system.

In conclusion, the future for infrared is bright. With cross-industry support, IrDA is fast becoming the ubiquitous infrared

communications system for portable and peripheral devices. Although legacy support for other infrared systems will per-

sist for some time to come, the IrDA standard is now used on so many platforms that it is unlikely any new systems will

be anything other than IrDA-enabled.

References

1. IrDA Marketing Requirements—Basis for the IrDA Technical Standards, Version 3.2, The Infrared Data Association, November 23,

1993.

2. Serial Infrared (SIR) Physical Layer Link Specification, Version 1.0, The Infrared Data Association, April 27, 1994.

. Serial Infrared Link Access Protocol (IrLAP), Version 1.0, The Infrared Data Association, June 23, 1994.

. Link Management Protocol (IrLMP), Version 1.0, The Infrared Data Association, August 12, 1994.

. Serial Infrared Physical Layer Link Specification, Version 1.1, The Infrared Data Association, October 17, 1995.

. Serial Infrared Link Access Protocol (IrLAP), Version 1.1, The Infrared Data Association, June 16, 1996.

. Tiny TP: A Flow-Control Mechanism for use with IrLMP, Version 1.0, The Infrared Data Association, October 25, 1995.

. IrCOMM: Serial and Parallel Port Emulation over IR (Wire Replacement), Version 1.0, The Infrared Data Association, November 7,

3

4

5

6. Link Management Protocol (IrLMP), Version 1.1, The Infrared Data Association, January 23, 1996.

7

8

9

1995.

10. LAN Access Extensions for Link Management Protocol (IrLAN), Proposal, Version 1.0, The Infrared Data Association, January 1,
1996.

11. Object Exchange Protocol (IrOBEX), Draft, Version 0.5f, The Infrared Data Association, July 24, 1996.

12.S. L. Harper and R. S. Worsley, "The HP 48SX Calculator Input/Output System, Hewlett-Packard Journal, Vol. 42, no. 3, June 1991.

13. Information technology—Telecommunications and information exchange between systems—High-level data link control

(HDLC) procedures—Elements of procedures, ISO/IEC 4335, International Organization for Standardization, December 15, 1993.

14. Information technology—Telecommunications and information exchange between systems—High-level data link control

(HDLC) procedures—Classes of procedures, ISO/IEC 7809, International Organization for Standardization, December 15, 1993.

15. Infrared Sockets (IrSockets) Specification: Functional Specification, Revision 1.0, The Microsoft Corporation, July 10, 1996.

Microsoft is a U.S. registered trademark of Microsoft Corporation.

Atticle 2 o © 1998 Hewlett-Packard Company @ February 1998 e The Hewlett-Packard Journal

lain Millar

As a member of the tech-

nical staff at HP Labora-

J tories in Bristol, England,

Tain Millar is involved in the development of

protocols for the next generation of IrDA sys-

tems. He attended the University of Aberdeen

in Scotland where he received a BSc (Eng.)

degree (1988) in electrical and electronic

engineering and a PhD (1995) in the area of

fault tolerant protocols for LANs.

Kirk W. Lindstrom

A member of the techni-

cal staff at HP's Commu-

nication Semiconductor

Solutions Division, Kirk Lindstrom is respon-

sible for the design of ICs for infrared prod-

ucts. He joined HP in 1978 and since that time

he has worked on the design of optocouplers,

fiber-optic modules, and infrared transceiv-

ers. He holds a BS degree in EECS (1979)

from the University of California at Berkeley.

Besides being an ardent windsurfer, he also

has an interest in doing and writing about

investing.

Martin Beale

Martin Beale is a member

of the technical staff at

Hewlett-Packard Labora-

tories in Bristol, England. He is working on

the physical layer for the next generation

IrDA systems. He earned a PhD degree (1994)

in reduced complexity decoding of convolu-

tional codes from the University of Cam-

bridge. Outside of work he enjoys rock climb-

ing, walking, cycling, skiing.

Stuart Williams

A project manager at HP

Laboratories in Bristol,

England, Stuart Williams

is responsible for the infrared communica-

tions group. He has worked on various infra-

red protocol-related projects since he joined

HP in 1992. He has a PhD degree (1986) from

the University of Bath. Stuart was born in

Rugby, Warwickshire, England, is married

and has two sons. Biking and sailing occupy

his free time.

§ Bryan J. Donoghue

Bryan Donoghue is a

member of the technical

- staff at HP Laboratories

in Palo Alto where he is working on the digi-

tal system design for high-speed wireless

radio LANs. He received a MEng degree

(1991) in electrical and electronic engineer-

ing from Loughborough University in Eng-

land. Bryan was born in Llanelli, Wales and

outside work he enjoys traveling, learning

foreign languages, backpacking, and cycling.

Atticle 2 o © 1998 Hewlett-Packard Company

P Goto Next Article

» Go to Journal Home Page

February 1998 e The Hewlett-Packard Journal

SHARP
IrDA Application Note IrDA Control

An Introduction to IrDA Control

Robert Stuart, IrDA Product Manager

Presented at Portable Design East on August 31, 1998

This paper is an overview of the IrDA* Control sys-
tem technology. The areas covered will be the Physical

Layer (PHY), Media Access Control Layer (MAC) and

the Logical Link Control Bridge Layer (LLC).

NOTE: *The Infrared Data Association: IrDA was established in 1993

to set and support hardware and software standards, which create

infrared communications links. IrDA standards support a broad range

of computing, communications, and consumer devices. International

in scope, IrDA is a non-profit corporation head quartered in Walnut
Creek, California, and led by a Board of Directors, which represents

a voting membership of more than 160 corporate members world-

wide. As a leading high technology standards association, IrDA is
committed to developing and promoting infrared standards for the

hardware, software, systems, components, peripherals, communica-

tions, and consumer markets.

IrDA can be contacted at: PO Box 3883, Walnut Creek, CA, 94598;

Web: www.irda.org, Phone: 925-943-6546, Fax: 925-943-5600.

INTRODUCTION
IrDA Control technology differs from the classical

IrDA Data technology in several key characteristics.

IrDA Data is a peer-to-peer file-oriented data transmis-

sion system. The link range was specifically designed

for a one-meter range to meet a variety of requirements.

IrDA Control is a command and control architecture

for communication with wireless peripheral devices

such as mice, keyboards, gamepads and joysticks.

This system is specifically oriented towards control

data packets, and is not intended to pass files. The pur-

pose is to pass short control packets between the host

device and the remote input devices.

SYSTEM OVERVIEW
The IrDA Control system is a polled-host topology.

The host device polls up to eight peripheral devices in

an ordered sequence, providing service requests and

handling the peripheral device responses.

The host may be a Personal Computer (PC) with
peripheral devices such as a mouse and keyboard.

Once the system boots up, the remote (wireless) key-

board and mouse will operate with the host PC in the

same manner as a wired keyboard and mouse. The PC

system drivers acknowledge the wireless mouse and

keyboard, and they will work in addition to the normal

mouse and keyboard, if desired.

When the peripheral devices are brought into oper-
ation, the system performs an enumeration sequence
so that the host knows the peripheral device, what type

of device it is and how it is expected to act. Once enu-
merated successfully, the device will then be bound to

the host when it is to be used. Up to eight peripheral

devices may be held in the device enumeration list and
up to four devices actively bound and communicating
with the host at one time.

If a mouse is operating, and then is not used for a
few seconds, the binding will be dropped and the enu-

meration still held. When the mouse is again used, the

system will rebind it and accept inputs from it. If the

mouse remains idle and another idle device needs ser-
vice, if it has previously been enumerated, it will be

bound and service will be provided as long as overall

system requirements are not exceeded.

The IrDA Control system has an operating range of
about seven meters, on average. Peripheral devices

may be used in a short-range environment, or at
longer ranges such as sitting on the couch in a family
room at home.

The use of IrDA Control is not limited to the PC envi-

ronment. It will work as effectively with Set Top Boxes
and other consumer devices and will lead to new inter-
active remote devices for use with these products.

The system layers covered in this paper are shown
in Figure 1.

The applications and access layer software reside

on top of the physical layer. These will be described

from the bottom up.

TRANSCEIVER

. [| Encooer | IRTx —
w
|
-

Q MODEM B
z

3 |<— | pecoper | |~ IR Rx |~—

IRDA3-2

Figure 1. System Layers

IrDA Application Note

IrDA Control SHARP An Introduction to IrDA Control

PHYSICAL LAYER (PHY)
The IrDA Control system uses a PHY that is different

from the earlier data-oriented IrDA 1.0 and 1.1 stan-

dards. IrDA Control uses a 16 Pulse Sequence Modu-

lation (16 PSM) format. Each data bit encapsulates a

1.5 MHz subcarrier frequency. The overall payload

capability for the system is 75 kbps*.

NOTE: *Refer to the complete IrDA Control 1.0 specification, Copyright

Infrared Data Association.

The IrDA Control specification defines the transmis-

sion speeds, modulation schemes, infrared wave-

lengths of the optical signals emitted by the transmitter

and those signals received by the receiver.

The specification does not mandate the actual sig-

nals in the encoder/decoder process or the internal sig-
nals in the IR transceiver.

The data transmission process is handled by optical

transceiver devices that incorporate both the transmis-

sion Light Emitting Diode (LED) and the Photodetector

(PD) circuits and amplifiers.

An encoder and decoder reside in the bit-stream
path and handle data coding and the modulation pro-
cess. Data is passed from the controlling device to the
encoder/decoder and then on the transceiver. The
1.5 MHz subcarrier process and the coding of the

transmission symbols were chosen to minimize possi-

ble interference with other transmission systems.

The basic flow of information shown in Figure 2

works for both the host and peripheral side of the sys-

tem. In both cases, when actions are to be completed,

the controller makes a decision and sends data out

through the infrared link to the other device.

TRANSCEIVER

l— | ENCODER | = IR Tx -
i
-
- |

Q MODEM
T
-

8 l<—{ | pecoper | |~ IR Rx |-—

IRDA3-2

Figure 2. PHY Layer Block Diagram

In the case of a mouse, position or button press

information is held in the microcontroller. When polled
by the host, the mouse will respond, informing the host

that it has information to send. The host will then

request the information and the mouse will send it. The
mouse controller will pass the data to the Modem func-

tion, which will handle all coding and modulation

details. The transceiver performs the electrical to opti-
cal translation between systems.

The encoder automatically formats the data stream

in the 16 PSM scheme for transmission.

A time defined as ‘symbol time (Dt)’ is equally
divided into eight slots defined as ‘chips’, and a pulse is

allowed only during two or four of those chip periods.

Each chip time (Ct) is given by the following equation:

Ct=Dt+8

Information is transmitted according to the pulse pat-
tern of the sequence. Unique sets of four bits corre-
spond to a specific symbol value. The Data Bit Sets of

the 16 PSM symbols are shown in Table 1. The wave-

forms that have legal pulse sequences are defined as

16PSM Data Symbols, or simply as Symbols.

In the 16 PSM scheme, four bits of information can
be transmitted within a single symbol time. Accord-

ingly, there are 16 waveforms defined as 16 PSM Data
Symbols. Each unique set of four bits corresponds to

one of 16 symbol values, and is defined as a Data Bit

Set (DBS).

Table 1. 16 PSM Data Symbol Representation

DATA VALUE | DATA BIT SET| 16 PSM DATA
(HEX) (DBS) SYMBOL
0x0 0000 10100000
ox1 0001 01010000
ox2 0010 00101000
0x3 0011 00010100
Ox4 0100 00001010
0x5 0101 00000101
0x6 0110 10000010
0x7 0111 01000001
0x8 1000 11110000
0x9 1001 01111000
OxA 1010 00111100
0xB 1011 00011110

0xC 1100 00001111
0xD 1101 10000111
OxE 1110 10100101
OXF 1111 11100001

IrDA Application Note

An Introduction to IrDA Control SHARP IrDA Control

The encoder will place each bit of the DBS into one
of the eight chip times in each symbol, as explained

above. The encoder will also insert the 1.5 MHz sub-

carrier into each bit envelope in preparation for trans-

mission of the symbol.

For the Data Bit Set corresponding to the hex value
in the left column, the encoder will format the 16 PSM
data shown on the right. This data symbol will then be
transmitted over the optical link.

The system packet structure is shown in Figure 3.

Two types of packets are used in the IrDA Control sys-

tem: short packets and long packets.

Each packet consists of six fields: The Automatic Gain
Control (AGC); Preamble (PRE); Start Flag(STA or STL);

MAC frame; Cyclic Redundancy Check (CRC, either
CRC-8 or CRC-16); and Stop Flag (STO).

Data transmission starts with the leftmost bit in

each field. The AGC field is used to set the AGC level

in the receiver.

The Preamble is used to attain clock synchroniza-
tion. The Start Flag is used for symbol synchronization.

The MAC frame is passed, the CRC is sent and the

Stop Flag sent to end the transmission.

The 1.5 MHz subcarrier pulses in the data bits are

transmitted for a logical ‘1’ and are not transmitted for

alogical ‘0’

8BITS 4BITS 4BITS
0 -9 BYTES (SHORT FRAME)
0- 97 BYTES (LONG FRAME)

MAC HA PA | N MAC PAYLOAD

| |
I |

| | 8 BIT (SHORT FRAME)
! 116 BIT (LONG FRAME)

AGC | PRE | STA MAC FRAME CRC sTO

NOTES:
HA: Host Address field

PA: Peripheral Address field
MAC CNTL: MAC Control field

IRDA3-3

Figure 3. MAC Frame Structure

IrDA Application Note

IrDA Control SHARP An Introduction to IrDA Control

The diagram in Figure 4 shows an example of data
value OxF5 is being sent out. The lower half of the data

byte is sent first, so the value F5 is actually transmitted

as 5F.

The Subcarrier Emission Pulse Chip (SEPC) is the

string of ten 1.5 MHz subcarrier pulses that are inserted
into each logical ‘1’ data bit of the eight chip times in the

transmitted 16 PSM data Symbol.

When the data stream is detected at the receiver,

the 1.5 MHz subcarrier pulses will be extracted and the
coded Data Symbol will be forwarded to the decoder.

The Data Bit Set associated with each 16 PSM Data
Symbol will be extracted and passed to the MAC layer.

The system will recognize the control symbols such as

Start and Stop and translate them appropriately.

The system specifications call for a minimum five-

meter operating range. Various distances and operat-

ing angles between host and peripherals are described
in the full specification. The basic operating environ-
ment calls for a £30° angle from the transceiver in the
horizontal plane and +15° in the vertical plane.

Detailed specifics of the ranges, angles and oper-
ating conditions are in the complete IrDA Control
specification.

NOTE: *Refer to the complete IrDA Control 1.0 specification, Copy-

right Infrared Data Association.

MEDIA ACCESS CONTROL LAYER (MAC)
The IrDA Control system consists of hosts and

peripherals between which infrared communication
takes place. The host manages its communications

with multiple peripherals on a time division basis, using

polled-response handshakes.

The host polls all of the bound peripherals to deter-
mine which items need to be serviced. The peripherals

respond to the poll from the host, and do not initiate
transmission. The peripheral devices do not transmit
unless they are given response permission.

The only exception is when the host is asleep and a
peripheral initiates a wakeup call for service. Then the

host steps back into the polling sequence and looks for

devices to service. If there is no transmission between

the host and any peripheral for a set time, then the host

will again enter sleep mode.

Generally, hosts do not communicate with each
other, however there could be times when they need

to do so, if there are multiple hosts in a room. Usually
if multiple hosts are present, they detect each other

and dither their transmissions to reduce the possibility

for interference.

DATA VALUE = OxF5 1111
0101 (BYTE)

i i

0000010 1|1 11000 01
;] ; ' ' ‘ SYMBOL |
i SUCCESSIVE |
i

i

! CHIP ISEPCs |

\ | ! ! | N + 1 I |

IDAGONTROL | | ! | 1 ol P
SIGNAL I o [

[| e | [
I 1

| SUBCARRIER EMISSION
PULSE DURATION (SEPD)

T
10 SUBCARRIERS/SEPC

INCREASING TIME
SUBCARRIER
EMISSION

PULSE CHIP
(SEPC)

IRDA3-4

Figure 4. Data Transmission Coding Example

IrDA Application Note

An Introduction to IrDA Control SHARP IrDA Control

Each device has an address and identifier that

clearly identifies hosts and peripherals. An 8-bit host
address (HADD) and a 16-bit host ID (HostID) identify
a host. A host address may be set at the factory, or be

determined while the host is set up.

A peripheral is identified by a 32-bit physical 1D
(PFID). A host and a peripheral have to exchange

address/ID information as part of a process
called enumeration.

Alogical 4-bit peripheral address (PADD) is uniquely

assigned to each peripheral by the host to establish

‘active’ communication. This procedure is a part of a

process called binding, which is performed when an

enumerated peripheral requests communication with

the host. The ID numbers are used only in the begin-
ning of a communication to identify the devices. After

the identification, hosts/peripherals are identified only

by their address.

The requirements for IrDA Control communication
vary depending on the application. In order to comply

with various application requirements, three opera-
tional modes are offered for a host.

Mode-0: Sleep Mode
This is a ‘Low resource usage’ mode to minimize

power consumption when a host and its peripherals do

not need to communicate. This is also the default mode

for each host.

Mode-1: Normal Mode

This is the normal operational mode of the host. This

mode supports peripherals that may have different

bandwidth requirements. Peripherals supported

include devices that must be handled within certain

time limits [Critical Latency peripheral (CL)], like joy-

sticks and game pads.

Peripherals that normally do not have critical latency

requirements [Non-critical Latency peripheral (NCL)],
like Remote Control units are also supported. Key-

boards and mice could be handled as NCL or CL
peripherals under this mode. A CL peripheral is able to

support CL polling rate.

An NCL peripheral is not able to support CL polling
rate and is always polled at the NCL polling rate. A
host must guarantee that a CL peripheral is polled

every 13.8 ms.

Mode-2: IrDA-coexistence mode

This operating mode is available to allow coexist-
ence of IrDA SIR version 1.1 data communication and
IrDA Control communication.*

NOTE: *Refer to the complete IrDA Data specification version 1.1 or

1.2 for detailed information on SIR and FIR modes of operation.

The host may move between any of the three modes
listed above. It is not required that all hosts support all

three modes.

When enumerated, the peripheral identifies the type

of service that it requires, so that the host knows

whether CL or NCL support is to be used. Critical
Latency devices have priority over Non Critical Latency

devices, which may not be serviced within the 13.8 ms
cycle, depending on system resources and how they

are being used. In some cases they may unbind and

wait for a service slot.

If four CL devices such as joysticks are actively

engaged in a game, then the NCL devices may not be

poled for an extended period of time. They do remain

enumerated and known to the host. Should the play of
the game slow such that the CL activity decreases then

the NCL devices can rebind and be serviced. An exam-
ple of this is to stop the play and enter some text or

player names or other similar activity.

IrDA Application Note

IrDA Control SHARP An Introduction to IrDA Control

FRAMES
Two types of MAC frames are defined based on the

maximum MAC payload data length that can be trans-
mitted by a host or a peripheral. One is a short frame

and the other is a long frame. A short frame can accom-
modate up to 9 bytes of MAC payload data and must
be transmitted with the STS flag, STO flag and CRC-8.
These are shown in Figure 5.

A long frame can accommodate up to 97 bytes of

MAC payload data and must be transmitted with the

STL flag, STO flag and CRC-16. Long frames are suit-
able for larger data exchanges.

Host devices and peripheral devices may always
use short frames. Host devices may use long frames in
Mode-1 only. Peripheral devices may use long frames

only when responding to a polling packet from a host
device whose long frame enable bit is set to ‘1’, which
occurs when the host is in Mode-1. A host device and

a peripheral device are prohibited from both using a

long frame in the same polling procedure (in the polling

frame from a host as well as the responding frame from

a peripheral).

In this case it is also possible that the NCL polling
cycle may be stretched if several NCL devices are
exchanging long frames. Once the activity is finished,

the normal polling cycle will be resumed.

The basic polling cycle for the IrDA Control system

is defined as 13.8 ms. Up to four CL peripherals can be

polled with short frames within this cycle time. The

basic polling cycle time is dependent on the minimum

interval between inputs from a peripheral input device,

such as a joystick or gamepad. These devices have the

most critical response time. Keyboards and mice are

more flexible with regards to actual response time.

A Non Critical Latency device is not guaranteed a
poll within the 13.8 ms time. The entire polling cycle
time is defined as the time period in which all bound
peripherals can be polled by a host. The host has to

manage all of the peripherals so that the entire polling
cycle time does not exceed 69 ms.

The possibility exists that cases may arise when the

cycle time is shorter than the time required servicing all

of the items in the list. The host will try to service all of

the devices on the next poll cycle. A peripheral device
that misses one or two poll cycles will notimmediately be

unbound. The Peripheral must not acknowledge approx-

imately 100 polls before the host drops the binding.

With this information in mind, long frames are only
applicable for transmission when CL devices are not

bound on the system, or their service requirements do
not restrict the system from servicing long frames.

The MAC frame field structure is shown in Figure 3.
The Host Address and Peripheral Address fields and

the number of bits associated with each are shown.

The MAC control field has a variety of functions. It is
used to communicate packet direction, bind timer

restarted, long frame enable, device hailing and polling

requests.

Enumeration is the procedure in which a host and a

peripheral recognize (discover) each other to enable
communication between them. The host identifies the

peripheral using the peripheral physical identifier
(PFID) and the peripheral identifies the host using a

host address. The PFID and the HADD are exchanged

during the enumeration procedure.

Enumeration is basically the process where the host

adds the peripheral to the list of items that it ‘knows’.

AGC PRE STA=STS CRC=CRC-8 sTO
(2 BIT TIMES) | (5 BIT TIMES) | (5 BIT TIMES) MAC FRAME (8 BITS) (4 BIT TIMES)

(a) SHORT PACKET

AGC PRE STA=STL CRC = CRC - 16 STO
(2 BIT TIMES) | (5 BIT TIMES) | (5 BIT TIMES) MACIFRAME (16 BITS) (4 BIT TIMES)

(b) LONG PACKET

IRDA3-5

Figure 5. System Packet Structure

IrDA Application Note

An Introduction to IrDA Control SHARP IrDA Control

An IrDA Control peripheral must be enumerated

(and bound) with a host before it can exchange data
with the host side application layer. A peripheral that

has not been enumerated must not perform any com-

munication other than the enumeration procedure. The

host ignores a hailing response received from any

peripheral to which it has not enumerated.

Special mechanisms may be required on IrDA Con-

trol devices to initiate the enumeration procedure, such

as a button located on the device. The enumeration

procedure uses short frames only and is carried out in
the following steps. An example of this is if a new

device asks for service when the host is not hailing for

new devices, but servicing devices already enumer-
ated and bound.

Peripheral address ‘OxF’ is used in the process of

enumeration. During enumeration, the host polls using a
peripheral address ‘0xF’. Unenumerated peripherals are
allowed to respond to host polls with PADD of ‘OxF’ only.

The host issues an enumeration hail with the ‘hail-

ing’ bit set to ‘1’, and a peripheral address OxF. This
host poll frame includes information about the host

(Host ID and Host Info).

Atfter storing the HADD, HostID and Host Info data,

a peripheral that desires enumeration responds to the

hail frame with a frame including its PFID and informa-

tion about itself, Peripheral Info.

The Peripheral Information tells the host whether the
peripheral is a critical latency peripheral (i.e., the

peripheral supports the CL polling rate) or not, as well

as whether the peripheral has the ability to send or

receive long frames. Other information that can be sent

as part of the Peripheral Information is a Device

Descriptor, Configuration Descriptor and other fields
that are used to tell the host more about the peripheral

and what it is expected to do. This information can be

used to tell the host which device driver is to be used.

The host, which has received the response frame,

stores the PFID and Peripheral Information. Then in the

next polling cycle, it responds to the peripheral with a

frame including the received PFID.

Once the enumeration process is completed, the

PFID will be added to the enumeration list in the host.

Any item that has been enumerated will be in the list,

up to a total of eight items. When additional items are

enumerated, the least active device will be dropped

from the list. As peripherals are brought into use, the
list will be updated for those devices that are in use and
have been recently used.

The enumeration procedure may fail due to multiple
peripherals responding to the same hail. After respond-
ing to the enumeration hail, the peripheral should

receive a response from the host with PFID. If a periph-

eral does not receive the above packet from the host

within 69 ms after a request, the peripheral recognizes
the failure and goes back to responding with a frame

that includes its PFID and a random back-off value
between 0 to 7.

If the random back-off value is 0, this peripheral will

send a response frame in the next hailing cycle. If the
random back-off value is 7, this peripheral will ignore 7

hailing frames and can send a response frame in the
eighth hailing cycle.

The full detail of all possible modes and various con-
ditions are in the IrDA Control specification.

NOTE: *Refer to the complete IrDA Control 1.0 specification, Copy-
right Infrared Data Association.

The process in which a host dynamically recognizes
that an enumerated peripheral needs to be added to

the active device-polling loop is called ‘Binding’. When
bound, the host will include the peripheral device in the

active polling cycle and issue poll requests to the

device on a cyclic basis. To bind, a process similar to

the enumeration sequence is used.

When bound, the peripheral will respond to host

polls indicating that it has data for the host. The host
will then ask for the data.

When a bound peripheral does not respond to poll-

ing for a certain time period, the host recognizes that
the peripheral does not need further communication

and drops it from the active polling list. This process is

called ‘Unbinding.” An unbound peripheral is still enu-

merated and can be picked up into the polling cycle at
any time.

When the device has been unbound and sits idle,

the peripheral will go into a sleep state where power

consumption is very low, typically 1 puA. If we use the

mouse as an example, it goes to sleep once it sits idle

for more than a few seconds. When asleep, it will

awaken when moved or one of the buttons is pushed.

Then it will respond to a hailing poll, or will send a wake

frame to the host if it is asleep.

The complete details of all cases for binding and
unbinding are in the complete specification.

NOTE: *Refer to the complete IrDA Control 1.0 specification, Copy-

right Infrared Data Association.

IrDA Application Note

IrDA Control SHARP An Introduction to IrDA Control

PROTOCOL STACK

The IrDA Protocol stack resides on top of the MAC
layer and services the Human Input Device (HID) defini-
tion device LLC, the HA LLC and the future device LLCs

(yet to be defined). This stack is shown in Figure 6.

At the present time, the HID stack is the most com-

plete and is used in conjunction with standard Univer-
sal Serial Bus (USB) definition HID devices.

The stack is basically the same for both the host and

peripheral side. In the case of the peripheral, only one
of the three application stack LLC columns would be

used to service the inputs from the device. In the case

of a special function device, more than one column
may be present, however the complexity of the periph-

eral device increases drastically.

In the case of the host, the HID drivers are compati-

ble with USB logical devices. The USB Host version

interfaces will implement a Common Class driver that

links in with Windows 98* USB drivers to provide an
interface to the PC system drivers. The Common Class

driver definition allows for multiple devices to work

through the single device endpoint in the system, with-

out requiring multiple Serial Interface Engines in the

host interface device.

NOTE: *Windows 98 is a trademark of Microsoft Corporation.

When the USB host recognizes a bound peripheral,

the device driver information will be passed up to the

operating system to identify the bound device. The host

machine, when operating with Windows 98, will then

ask for the device description and the host will pass this
request out to the peripheral.

The peripheral will respond with its peripheral infor-

mation, which will be passed up to the operating sys-

tem. The operating system will then load the

appropriate driver to service the peripheral.

When a host device is embedded in a system, which
has its own operating software, the same process is fol-

lowed. In this case there may be a variety of drivers to

support multiple types of peripheral devices. The oper-

ating system will need to provide the same service
capabilities, however the USB interface may not be
present. If the USB interface is present, then the system
software should support the standard USB services.

An example of such an implementation is a Set Top

Box (STB) used in the family room. The addition of a
keyboard and mouse for use with an Electronic Pro-

gram Guide (EPG) may be a desired feature set. The

STB may have a packaged operating system or use its
own software. In either case, all of the AMC and LLC

functions must be supported to provide service to the

peripheral devices. The STB acts as the host and polls
the room.

In a STB application, a forced enumeration may be

a desired function. An example is the use a specific
keyboard and mouse combination product. The user

would not want to enumerate every device that came

into view, such as another keyboard or a series of

game controllers and joysticks. The user may prefer to
tell the STB when a new device should be enumerated
instead of hailing the world at large. In either case, the
same enumeration and bind process as described
above would apply.

The operating system of a STB is likely to talk
directly with the IrDA Control host controller and not
rely on a USB interface due to the additional cost. It
also does not make fiscal sense to add another inter-
face only to speak to an embedded IC. However,
depending on feature set, the STB may include a USB
port on the rear, so that an IrDA Control interface can

be added at a later time, depending on user functions
and feature set. In this case, a standard USB host inter-
face could be plugged into the port and function as part

of the overall system. The STB operating system would
need to support USB services. In STBs that incorporate

Windows CE*, some USB support may be provided as

part of the operating system in the future, and adding

an IrDA Control feature would not be difficult.

NOTE: *Windows CE is a trademark of Microsoft Corporation.

The Home Appliance application column is still being
defined. The Future device application column provides

for future devices not yet developed or defined.

LOGICAL LINK CONTROL (LLC)
The Logical Link Control Layer provides resources

for reliable communication of data between the MAC
layer and the application, as shown in Figure 6. IrDA

Control has a goal of providing components, and a pro-

tocol, that allow it to be used in a wide range of devices,

with great variation in resource and cost requirements.

The LLC provides the link layer resources used by
IrDA Control devices, regardless of what higher level

protocol may be used. It enables reliability through the
use of lightweight protocol controlling frames.

v
HID DEVICE + HOME APPLIANCE ! + FUTURE DEVICE |
APPLICATION | + APPLICATION

L

v 1y '
HIDADA | 1 | | FUTURE DEVICE !
CONTROL | MALLC 1. e

[S O e et U

IfDA CONTROL MAC

DA CONTROL PHY

NOTE: ltems in dashed boxes indicate future devices. |RDAZ-1

Figure 6. Protocol Stack

IrDA Application Note

An Introduction to IrDA Control SHARP IrDA Control

The LLC layer specifies only simple methods for

acknowledgment of delivery. Therefore, it might happen
that the LLC Layer by itself couldn’t honor an application
that requires strictly reliable data communication. The
upper layers should implement error correction func-

tions, re-transmission functions, and so on, when assur-
ance of reliable communication is necessary. In some
cases, such as USB-HID, much of the Link Layer actu-
ally resides with the Host Operating System, and the
IrDA Control LLC layer is used as a bridge to and from
the MAC layer.

The LLC Layer is not utilized during enumeration and
binding procedures. The functions of LLC Layer are:

Information Features

¢ Send Commands

* Receive Requests

¢ Send Data

¢ Receive Data

Reliability Features

¢ Prevent duplicate frames.

e Acknowledgment of delivery based on single frame

transmission (ACK).

¢ Re-transmission function responding to NAK or
ignore.

¢ Provide notice of unsupported features or inability to
handle a request at this time.

The LLC field in the MAC frame has control and pay-

load sections that are used to communicate information

between layers. Mode and status fields pass bits indi-
cating the packet type and operation to be conducted.

END-USER PRODUCTS
The end goal of the IrDA Control system is to allow

developers to create host and peripheral products that

are basically interchangeable. A mouse designed for
one system should work on all systems, regardless of

the manufacturer.

In like manner, any host that supports a mouse,
regardless if it is on a PC operating system or an

embedded controller product running in a consumer
product should recognize an IrDA Control mouse.

Part of the descriptor fields in the peripheral product
is an explanation of what it is, so that the correct driver
is loaded. Game controllers is another category could
experience quick growth, as there is already a large
number and variety of products on the market. Drivers

for most of these are common on systems or are easily

loaded. A correctly implemented IrDA Control device
appears transparent to the overall operating system.

One device that is envisioned for the Home Automa-
tion LLC path is intelligent remote controls for con-
sumer products. Instead of six remotes on the coffee

table, a single remote that could talk to every device in
your home. It could be able to download the EPG from

the STB and program the VCR and other products. If it
has a touch-sensitive Liquid Crystal Display, it could be
used by anyone. The size and format of the display
could then be customized to meet user needs.

SUMMARY

IrDA Control is a polled host system that supports a

variety of cordless input peripherals. It is a control input

oriented system that eliminates the wires required for

standard input devices. It is appropriate for applications

where the user prefers to eliminate the tether and step

back from the product in use.

IrDA Control input products are also appropriate in

applications where the user prefers to eliminate the

clutter of cables in a short-range application.

This paper outlined the hardware approach for the

IrDA Control system as well as the Media Access Control
and Logical Link Control layers. The MAC controls the
software coordination between the hardware and soft-

ware for system operation. The LLC layer arbitrates the
link and tries to maintain an orderly flow of information.

The IrDA Control system can be implemented into a

wide variety of products. It is currently PC-oriented,
however it does not have to be. Anything that you can

envision is a possible application, when you are ready

to remove the cable for control input devices.

IrDA Application Note

IrDA Control SHARP An Introduction to IrDA Control

LIFE SUPPORT POLICY
SHARP components should not be used in medical devices with life support functions or in safety equipment (or similiar applications where

component failure would result in loss of life or physical harm) without the written approval of an officer of the SHARP Corporation.

LIMITED WARRANTY

SHARP warrants to its Customer that the Products will be free from defects in material and workmanship under normal use and service for a

period of one year from the date of invoice. Customer's exclusive remedy for breach of this warranty is that SHARP will either (i) repair or

replace, at its option, any Product which fails during the warranty period because of such defect (if Customer promptly reported the failure to

SHARP in writing) or, (ii) if SHARP is unable to repair or replace, refund the purchase price of the Product upon its return to SHARP. This

warranty does not apply to any Product which has been subjected to misuse, abnormal service or handling, or which has been altered or

modified in design or construction, or which has been serviced or repaired by anyone other than Sharp. The warranties set forth herein are in

lieu of, and exclusive of, all other warranties, express or implied. ALL EXPRESS AND IMPLIED WARRANTIES, INCLUDING THE

WARRANTIES OF MERCHANTABILITY, FITNESS FOR USE AND FITNESS FOR A PARTICULAR PURPOSE, ARE SPECIFICALLY

EXCLUDED. In no event will Sharp be liable, or in any way responsible, for any incidental or consequential economic or property damage.

The above warranty is also extended to Customers of Sharp authorized distributors with the following exception: reports of failures of Products

during the warranty period and retumn of Products that were purchased from an authorized distributor must be made through the distributor.

In case Sharp is unable to repair or replace such Products, refunds will be issued to the distributor in the amount of distributor cost.

SHARP reserves the right to make changes in specifications at any time and without notice. SHARP does not assume any responsibility

for the use of any circuitry described; no circuit patent licenses are implied.

SHARP.
NORTH AMERICA EUROPE ASIA

SHARP Microelectronics SHARP Electronics (Europe) GmbH SHARP Corporation
of the Americas Microelectronics Division Integrated Circuits Group

5700 NW Pacific Rim Blvd., M/S 20 SonninstraBe 3 2613-1 Ichinomoto-Cho

Camas, WA 98607, U.S.A. 20097 Hamburg, Germany Tenri-City, Nara, 632, Japan
Phone: (360) 834-2500 Phone: (49) 40 2376-2286 Phone: (07436) 5-1321
Telex: 49608472 (SHARPCAM) Facsimile: (49) 40 2376-2232 Telex: LABOMETA-B J63428
Facsimile: (360) 834-8903 http://www.sharpmed.com Facsimile: (07436) 5-1532

http://www.sharpsma.com

©1999 by SHARP Corporation Reference Code SMA99054

Click Here shop wireless

Help | Contact Us | My Deja

Home >> Discussions >> w .palm . dev . forum-1 DISCUSSIONS SEARCH Power Search

>> w.palm.dev.forum-1

>> Forum: w.palm.dev.forum-1 @ Save this thread A

>> Thread: A chat program using Irda between Palm %fl

and PC back to search results Job Gaerch

>> Message 3 of 5 “Post Resumes
. “ Career Tools

Subject: RE: A chat program using Irda between Palm For HR/Recruiters
and PC :

Date: 01/07/2000

Author: Schettino, John <schettj@exch.hpl.hp.com>
Explore More:

<< previous in search - next in search >>

Irda is not fun on the Palm...

- swap the two lines
err = IrBind(refNum, &IrCon, IrHandler);

IrSetDevicelnfo(refNum, MyDevicelnfo, MyDevicelnfoLen);

to .

IrSetDevicelnfo(refNum, MyDevicelnfo, MyDevicelnfoLen);

err = IrBind(refNum, &IrCon, IrHandler);

(set device info before you bind)

Now for the bad news... You’re not going to be able to do the discovery right
after the bind, because the media will be busy for a little while. You can try
waiting for it to go non-busy:

while (IrlsMediaBusy (refNum))
SysTaskDelay(SysTicksPerSecond()/10));

That gives the Irda stack a chance to come up. Then you can do the irStatus =
IrDiscoverReq(refNum, &IrCon);

John Schettino author of
Palm OS Programming For Dummies, http:/schettino.tripod.com

From: Matchz [mailto:matchz @i.am]
Sent: Thursday, January 06, 2000 7:41 PM
To: palm-dev-forum@3com.com
Subject: A chat program using Irda between Palm and PC

I am trying to write a chat program using Irda between a Palm and PC. On the
PC side, I use winsock?2. I initialize the sock as follow:

SOCKET cli_sock = socket(AF_IRDA, SOCK_STREAM, 0);
SOCKADDR_IRDA srv_addr = {AF_IRDA, 0, 0, 0, 0, "PALMDEMO"};
bind(cli_sock,(LPSOCKADDR)&cli_addr,sizeof(cli_addr));

The code work well for 2 PC both have an Irda port.

So I try to program the palm side. I start the Irda service as follow:

static Ulnt refNum;

static IrConnect IrCon;

static Byte MyDevicelnfo[] = {IR_HINT_PDA, IR_CHAR_ASCII,
PPUA LMD, EL MO’),

static Byte MyDevicelnfoLen = sizeof(MyDeviceInfo);

err = SysLibFind(irLibName, &refNum);

err = [rOpen(refNum, irOpenOptSpeed9600);
err = IrBind(refNum, &IrCon, IrHandler);

IrSetDevicelnfo(refNum, MyDeviceInfo, MyDevicelnfoLen);

irStatus = IrDiscoverReq(refNum, &IrCon);

switch (irStatus) {

case IR_STATUS_MEDIA_BUSY:

SetStatus("IR Status Media Busy");

break;

case IR_STATUS_FAILED:

SetStatus("IR Status Failed");

IrUnbind(refNum, &IrCon);

IrClose(refNum);

break;

case IR_STATUS_PENDING:

SetStatus("IR Status Pending => Success");
handled = true;

}

However, function IrDisvocerReq always return IR_STATUS_MEDIA_BUSY

while I expect a IR_STATUS_PENDING should be returned. We can assume
that the statements before IrDisvoverReq always return no error.

Do I make any mistake in the statements above, what should I pay attention

when I
programming Irda?

Thank you.
Matchz.

<< previous in search - next in search >>

Subscribe to w.palm.dev.forum-1
Mail this message to a friend
View original Usenet format
Create a custom link to this message from your own Web site

. . For a more detailed search in Discussions go to Power
Search Discussions

Search

Search only in: w.palm.dev.forum-1

All Deja.com

Search for: IrConnect

Search

Search discussions
recent

Copyright © 1995-2000 Deja.com, Inc. All rights reserved. Advertise With Us | About Deja.c
Trademarks - Terms and Conditions of Use - Site Privacy Statement

Wolf Camera - Free Stuff @ FreeShop - Tires.com - Deja e-centives - ELECTRONICS @ SupremeVid
Cost+Pricing at eCOST.com - Search for Jobs! JobOptions - As Low as 2.9% Intro APR - Domain Regis

NEWcars@carOrder

Don't let your boss find out you're Brdinms
looking for a new job. “NETWORK®™ SP\OP wireless

Lo] Help | Contact Us | My Deja
Home >> Discussions >> w . palm . dev . forum-I DISCUSSIONS SEARCH Power Search

>> w.palm.dev.forum-1

>> Forum: w.palm.dev.forum-1 @ Save this thread

>> Thread: A chat program using Irda between Palm

and PC back to search results -

>> Message 4 of 5 ALL Ssachi
What’s in your

Subject: Re: A chat program using Irda between Palm future?
and PC Powered by JobOptions.com

Date: 01/07/2000 Explore More:

Author: Tom Frauenhofer <frauenl @yahoo.com>

<< previous in search - next in search >>

You get a lot of MEDIA_BUSY’s from the IR - put the
IrDiscoverReq()/switch() line in a loop, have it end the loop if it doesn’t get a
MEDIA_BUSY (either the PENDING or the ERROR should stop the loop).

(BTW, a good resource for IR programming at this level is Glen Bachmann’s
Palm Programming book - I believe he even has the chapter on IR
programming on his web site at http://www.bachmannsoftware.com/)

At 11:41 AM 1/7/00 +0800, you wrote:
>[am trying to write a chat program using Irda between a Palm and PC.
>On the PC side, I use winsock2. I initialize the sock as follow:

>
>SOCKET cli_sock = socket(AF_IRDA, SOCK_STREAM, 0);
>SOCKADDR_IRDA srv_addr = {AF_IRDA, 0, 0, 0, 0, "PALMDEMO"};
>bind(cli_sock,(LPSOCKADDR)&cli_addr,sizeof(cli_addr));

>
>The code work well for 2 PC both have an Irda port.
>
>So I try to program the palm side. I start the Irda service as follow:

static Ulnt refNum;

static IrConnect IrCon;

static Byte MyDeviceInfo[] = {IR_HINT_PDA, IR_CHAR_ASCII,
PUAL M LD E MO)

>
>

>
>
>
>
> static Byte MyDevicelnfoLen = sizeof(MyDevicelnfo);

>
>err = SysLibFind(irLibName, &refNum);

>err = IrOpen(refNum, irOpenOptSpeed9600);
>err = IrBind(refNum, &IrCon, IrHandler);

>IrSetDevicelnfo(refNum, MyDevicelnfo, MyDevicelnfoLen);

>
>irStatus = IrDiscoverReq(refNum, &IrCon);

>switch (irStatus) {
S case IR_STATUS_MEDIA_BUSY:

> SetStatus("IR Status Media Busy");
b break;

> case IR_STATUS_FAILED:
> SetStatus("IR Status Failed");
b IrUnbind(refNum, &IrCon);

> IrClose(refNum);

> break;

> case IR_STATUS_PENDING:
> SetStatus("IR Status Pending => Success");

-5 handled = true;

>}
>
>However, function IrDisvocerReq always return

IR_STATUS_MEDIA_BUSY while I

>expect a IR_STATUS_PENDING should be returned. We can assume that the

>statements before IrDisvoverReq always return no error.
>
>Do I make any mistake in the statements above, what should I pay attention
>when [

>programming Irda?
>
>Thank you.
>Matchz.

Do You Yahoo!?
Talk to your friends online with Yahoo! Messenger.
http://im.yahoo.com

<< previous in search - next in search >>

Subscribe to w.palm.dev.forum-I
Mail this message to a friend

View original Usenet format
Create a custom link to this message from your own Web site

For a more detailed search in Discussions go to Power
Search Discussions)

Search

Search only in: w.palm.dev.forum-1
All Deja.com

Search for: IrConnect

Search

Search discussions
recent

Copyright © 1995-2000 Deja.com, Inc. All rights reserved. Advertise With Us | About Deja.c
Trademarks - Terms and Conditions of Use - Site Privacy Statement

Wolf Camera - Free Stuff @ FreeShop * Tires.com - Deja e-centives - ELECTRONICS @ SupremeVid
Cost+Pricing at eCOST.com - Search for Jobs! JobOptions - As Low as 2.9% Intro APR - Domain Regis

NEWCcars @carOrder

Don't let your boss find out you're @Eh” tisns”

looking for a new job. “METWORKS® shop wireless

b iy i Help | Contact Us | My Deja

Home >> Discussions >> w . palm . dev . forum-1 DISCUSSIONS SEARCH Power Search

>> w.palm.dev.forum-1

>> Forum: w.palm.dev.forum-l @ Save this thread

>> Thread: Proper format for XID string in
IrSetDevicelnfo? back to search results
>> Message 1 of 5

Subject: Re: Proper format for XID string in

IrSetDevicelnfo?

Date: 12/18/1999

Author: Danny Epstein <Danny @ AppliedThought.com>
Explore More:

<< previous - next in search >>

At 9:57 AM -0800 12/16/99, Schettino, John wrote:

>I’m attempting to use the IrSetDevicelnfo() call to set the device info for
>an IRDA app... What’s the correct format for the XID string?
>
>This isn’tit: IrSetDevicelnfo (ir_ref, (BytePtr) "Palm eSquirt", 12);

By convention, the first one or two bytes are hints with all but the last hint byte
having the high bit JR_HINT_EXT) set. The remainder of the XID is up to
you.

The exchange manager uses IR_HINT_PDA | IR_HINT_EXT for the first byte,

IR_HINT_OBEX for the second, and the HotSync username for the remainder.

In BeamBooks, we don’t set IR_HINT_OBEX and we include the creator ID

of our app rather than the HotSync username so that the other side can confirm
it’s talking to a peer (see below). We also include the local LSAP selector,

which is something you’ll probably want to do.

When you get a discover confirmation, you can go through the XIDs of the
discovered devices to pick who you want to connect with, if anyone. We look
for an XID just like the one we’d generate, ignoring the LSAP selector. This
ensures we’re talking to another device running our app (possibly on some
other kind of hardware). If we find a device that has the same XID as we do
(ignoring the LSAP selector), we grab the LSAP selector and store it in the

rLsap field of the IrConnect structure.

AFAIK there is no central registry for XIDs.

Danny Epstein, Applied Thought Corporation
Have friends with Palm organizers? Get BeamBooks!
http://www.appliedthought.com/beambooks

<< previous - next in search >>

Subscribe to w.palm.dev.forum-I
Mail this message to a friend
View original Usenet format
Create a custom link to this message from your own Web site

. . For a more detailed search in Discussions go to Power
Search Discussions

Search

Search only in: w.palm.dev.forum-1

All Deja.com

Search for: IrConnect

Search

Search discussions
recent

Copyright © 1995-2000 Deja.com, Inc. All rights reserved. Advertise With Us | About Deja.c
Trademarks - Terms and Conditions of Use - Site Privacy Statement

Wolf Camera - Free Stuff @ FreeShop - Tires.com - Deja e-centives - ELECTRONICS @ SupremeVid
Cost+Pricing at eCOST.com - Search for Jobs! JobOptions - As Low as 2.9% Intro APR - Domain Regis

NEWcars @carOrder

0TX0 JLIH INIH ¥I SuTjep#
80%0 HDYSSHW INIH ¥I SUTIap#

70%0 WWOD¥I INIH ¥I 2UTlIap#

z0%0 1I4INIH ¥I SuTjeps
T0X0 ANOHAETAL INIH ¥I SUTISp#

/x

'$83Aq JUTY TTB IOJ SIOM IXF INIH W1 3BUI «
930N - (0JUISOTASQAI) SwWeij QIX Ue Jo PIaTF OFuI 82TASd dYl JO

53Aq puodss ay3 UT S3ITQ IUTY SYl SSSO0R 0] PSSN oIe BUTMOTIOF UL +/

08%0 IX3 INIH ¥I SUTIap#

07X0 NVYT INIH ¥I 2UTJIop#

0Zx0 XV¥d ILNIH ¥4I SUTIap#

0TX0 WAQOW INIH ¥I 2uTIop#
80%0 YALNI¥d INIH dI 2UT3I=p#

$0X0 YILNGWOD LNIH dI SUTISp#

z0%0 VA4 INIH ¥I SuTjysp#
T0X0 dNdTINIH ¥1 3uTIap#

/¥
- (0JUISDTASQAI) SWeIj IX Ue JO PTaTJ OFUI 80TARQ Y3 JO

5314 3SITI 2y UT SATQ JUTY SY3 SS205° 03 PISN I8 BUTMOTTOF SUL «/

39%0 dvST XYW ¥I SUTISp#

/x

dWIII UT J¥ST POMOTTR UMWIXER x/

€27 NAT QIX XuW 81 2uTiep#
/s

‘BWRUNMDTU Pu®R SIUTY SOTASD dY3 SUTLIUOD PTSTI OFUT «
aIx a2yl -awexl AISACOSIP B UT Pasn PTTI 0IJUT QIX 2U3 JO SZTS WNWTXEH

9 4ZISTISIT @DIAHG I SUTISDH
/%

$55001d AISAOOSTP UT Pasn 3IST SOTASP SYd JO 9ZTS x/

34 OJNI"HDIAZQ XYW ¥I SUTISP#
9LE LIAOYA LSHEL XYW dI SUTISpP#

2G I1EMOVd NOD dLl XYW ¥I SUTIsp#

09 LEMOYd NOD™ XVW I SUTIap#

/x
©SUOTIOPUUOD g AUTL PuUR JWIII 203 (dS¥3IDBUUOD x

20 b2¥302UUOD)) SWT] 3DSUUOD B JUSS S UED Jeyl 3o3ded JO SZTS UMWIXEH »/

R

sjueasuop pue sa2dAL »

P L T e PR T T s

JumugTsqUMNARIIqTIAT {
3se1dea qriat

‘queAE104] TeMdRITATTAT
JUSAZS TPUPHARILTTIT

‘usdoaTdeIIATTAT
‘axaN_SYIdearqriat

‘BureN®D TASQ38S” SYIdRILqTIAT

’ A0y SYIdeIIqTTIT
'PPY SYIdexrqiIat
‘bayisarderlqriat

‘po3osuucodeTIISTARIIATTIT
‘ AsngeTpeNs1deILq TTIT

' ASnge1oweysTARIIqTTIAT
' $5216013ONSIARIIqTTIAT

1X3°s10n1s

‘03urenTA®Q295dRIIqTIAT
‘oz TSxuXeNdeILqTIIT
2z TSXIXeRdRIIATTAT
' AsngTe00TdReIIqTIAT

‘beyeleqderqTIat
*dsy30ouuo)deIIqTIAT
'ba¥308uUU00dRIIATIAT

'de1a1309uUu00s TqdeILATIAT
‘de131399uu00de LA TTIAT
‘boy12A00S TAdRIIATTIT

‘putgunderlqIIIT
- -30e3I93UT QITXCO SY3l I91Je 1Ie3S °osoyl // ‘Iserdexrqiibxe = putadeIlqiIAT

) unus jopadAa
sdexy yxew ewbexdy

““““““““ 2

!adA1s3e3saI {
/§1021F0I0 PIOM

/5101IF2UTIO2T PAOM
} 3onx3s 3opadA3

SOTISTILISIBDIT AQ PLUINIST SINIONAIS //

sxoixs 21> 3O ¥ //
pusdo AIeiqIT 20UTS SI01Id TRTISS JO 4 //

(9 | doat3T02ds1309116%3) Pe310ddns1eSIT 2UTISPH
Boretp ps3jzoddns Jou IT 2yl SSIAESTR //

(5 | doot3ToedsT3IDqTIbxe) J{SEHpNeEIasIT SUTILPH
(sadousdoxT) sajex pneq a1qissod 12s //

(¢ | doot3102dST30qTI6Xe) SPONTRTISSISSIT SUTISPH
TeTIss 302aTp SN 03 ISATIP S3I8S //

(€ | doot3ToedsTioqribxe) SDTISTILISISDAT SUTISP#

s3eas souemrozzad suiniax //

(z | d09T3702dSTIDATT6XS) SPOHSUTUURDSISSIT SUTISDH
spow furuueds IT S2TQRSTP/US //

(1 | dost31oedST30qT16¥%3) SPORBUTUURDSISDIT SUTISPH
psTqeus BuTuUEdS SUINIBT //

:310dsueiy II sy3 03 Snbrun [Te oIe suotado 2SIUL //
Tox3uopqrbxd 103 s3pod uotado //

€0000000%0 0096p=ads3idouadoat SuTIsp#

£0000000%0 00z6TPa2ds3dousdoaT autIeps

40000000%0 0078epeadsidousdoat SUTISp#

009LS ST 3TneI=p // 41000000%0 009L5paadsidouadoaT SUTIapH

23e1 pneq psjerjobsu Xew s33S // 4€000000%0 00zsTIpeadsadousdoat autysp#
uadpal I03 soniea suorido //

000€TOTOXQ :3q pInoM T0°1TA //

200TO0ZOX0 :3q PINOM 200" TA //
£00ZZTTOX0 :3q PINOM €AZT TA //

SesesTsa-UOU I03J IaCUMU PTINg ST qad //
‘qusudoTaasp-(‘eydre-1 'e3aq-z aseaTsi-¢ :obeis ST s ‘XT3 bnq ST 3 //

UOTSISA IOUTW ST W ‘UOTSISA XOL®BW ST WW I8UM 'qISIUGIX0 //
AxeaqTT 39N 3JO UOTSISA 336 // 0 UOTSISAUMNIIAIT SUTISPH

qQTTAIDSTTISAS 103821073477 SUTISPH
ATe1qT II 243 JO UOTSISA JUSIAND Sy3 386 03 PIUTEIO =q ued °IN3ESF //

STUL "TTeS ()39913d 2yl YaTm oSN I0] 'SISCUMU Pue SI03e3x) 2In3esd //

WATeAQTT VAII. SWENQTTAT SUTISP#
Axeaqrl II 3O Sweu //

PEIEPi60
ag Lz unf

}
A1jugasTI~ 3on13s JopedAa

/%
soe3s sy3 Aq ATTeuzsjUT pesn ST AIJUFISTT «

#7008 3uUT Fopadiy
suesooq 103 5dA3 JUSISITP © OSSN SUOTIOUNI 3}De3S //

kR K XX E KRR KKK R KX KKK KKK YK ¥ ¥ X KKK AR KR K F R AR AAAAAAAA A

$21n30N13S BIRA 4
M

o L LR T EE R P

((((g+x3d(4234d)) ») (PIOMA))

\ | (8 >> ((z+33d(4234d)) «) (PIOMA))
\ (9T >> ((T+33d(42344)) +) (PAOMA))
\ | (Fz >> ((13d(42344)) x) (PAOMA))) (PIOMA) (23d) ZENISDSEI SUTISPH

((((T+33d(+234d)) %) (PIOM))
\ | (8 >> (23d(+2344)) 4) (PIOM))) (PIOM) (33d) 9TNASDSBI SUTISPH

$91n3on13S SBT BUTSS80O® UT POSN SOIDBH //

7 SSYIOTAE ENTYAT LD SYI 2UTISp#
/x

Iaqumu spoddo sseld Ag anfep 18D SVI «/

/» po3jzoddnsun st uotjexsdo pafrey Axand x«/ IIX0 aaLIOddNSNN~LEN SYI SUTISp#

/+ S3ISTX2 23INQTIIIL UYONS OU paTTes AXsnd «/ ¢ 9I¥LIY HONS ON LEY SVI SUTI=p4

/« SISTX2 SSEID YdNS Ou parre; AIend «/ T SS¥I0 HONS ON La¥ SYI SUTIap4
/« TN3sSs200ns ST uotjeasdo Azand «/ 0 SSE0DONS LAY SYI SUTISP#

-A79n0 SYI TNFSSeoons e I83je PTSTI SPOJIST SYI UT SANIONIIS
A120D SYI 9Yy3 UT DUNOF aQ TTTM SONTBA 25S8U3 JO SUQ ‘SSPOD UINISU SBI «/

33%0 QENIJEANN ET¥LLY SVI SUTIop#
€ ONI¥IS ¥aSN dI¥LIY SYI SUTIep#
¢ ONTY¥LS™LELOO gI¥LIY SVI SUTISp#
T WEOEINI ETMLIV SVI SUTISD#
0 ONISSIW ET¥LLY SVI 2UTIap#

/%

-A750p SYI TNISSS0ONS B 193JR 19IING SITNSST OUI «
putsxed usym 2dA3 103 pauUINISX SNTeA 2yl ST STYL -AI3ue SYI oYyl 30 odAL «/

9§ FZIS MLLY SYI XVW ¥4I SUTI=p#
/%

*apod
8yl Agq paoIojus ST 9ZTS STYL °"SSaT IO S23Aq 9G ST 9zTS STUeMOTTE 3U3 'SNUl «

3joyoed 23Aq p9 2UO UTYITM 1TJ onlea 2INQTIIIe ue Jo SzTS [BJO03 dYI 'Y «
Spusumoosx ATYBTY 9377 ¥QAI IebIe] 29 UBD SSN{eA 2INGTI3Ie YBNOUI USAT

*seTnx 9317 VAAI SY3 UTYITM SITI 1BYI 2INqTIIIe SVYI UR JO SZTS UMUTXEH 4/

sse SHINGTYLLY XVW ¥l SUTIapy
09 HWYN SYI™ XYW ¥I SUTISp#

/x

‘seuwreu 23NQTIIIY Pue saureu 3103[q0 SYI 103 3ZIS

STqeMOTTR UMWTXBW Y3 ST FWYN SYI X¥W ¥I ~SPTSTI SVI 03 SSNTeA UMUTXER y/

19 NET AMAND XYW W1 2UTISP#
/x

saTnI 8317 V¥QII aYl SSAISSqO 3ey) Axsnb e JO 9ZTS UMWTIXEW «/

T T T
%

s3ue3suop pue sodAL SVI «

4 1X1'S101.13S

O S T T T TR TR Y

Z0%0 dLLSOYTd NODT SUTI=P#
/x

ATTeuzs3ut pesn - sBe{J 109UUOIWT »/

11T AND”LSHLT INIAZT SUTISD#

01 ANITLSEL INIAET SUTISP#
6 ANI“SALVLIS INEAZT 2UTIap4

ANDTNOD WT INEAET SUTISDH
ANDTNOD dVT LNAAHT SUTISD#

ANDTANEAODSIA INAAAT SUTIDH
QNTTNODSIQ dvT INAAZT 2UTIaph
QNITNOD d¥T INHAZT SUTIop#

QETANVH LE¥OVd INIAET SUTIsp#
QNI™¥LIVA INIAST SUTIsp#

ANI NODSIQ WT INIAHT SuTIap#
QNITNOD™ WT INHAZT SUTISPH O

H
M
M
m
W

W
L
E
®

‘qusagar 93Ag JopedAa
/x

-MOTSq PSUTIAP
sxe psssed sjusas ay3 Jo sadA3 SUL "UOTIDUNZ YOBQIED SUO UYSNOIUI «

SUOT109UUOD dLL/dWIAI SU3 O3 JUSS SI8 SUOTIRWITIUOD DU UOTIBDTPUT TTV +

33%0 FAODINN MYHD ¥I 2UuTjep#

6 6 6588 0SI MVHD dI SUTI=p#

8 876588 OSI UVHD ¥l SUTIaP#

L LT658870SI WVHO ¥I 2UTI=pP#

9 97658870SI WVHO ¥l SUTI=P#

S S 65887 0SI ¥VHD ¥l SUTI=P#

¥ %6588 0SI WVHO ¥I SUTIP#

€ € 65887 0SI ¥VHD ¥I 9UTI=p#

7 T 6588 0SI ¥VHO ¥I SUTI=p#

T T17658870OSI WVHO ¥I 2uTiap#
0 IIDSY MVYHD ¥I SUT3i=p#

{3agIeYDaI 234g JepadAa

/%

-Butaas xesn edAl JO S2INQTIIIL SYI UT PUB SSWPUXDIN UT 39S
1330BIRYD SY3 103 SUOTITUTISP oIe 2soyl -SBUTIIS I9SN I0J I35 I2IDRIRYD

MOTINIT SNLVLIS I SUTIsp#
SSHYO0¥d ON SNIYLIS ¥I 2UTIsp#

ASNE LON VIQEW SOLVLIS ¥4I SUTI=p#
ASQETVIQEN SOLVLS ¥I 2UTIop#
JYTdI ON SALVLS I SUTIapy

IDINNODSIA SNLVLIS ¥I SUTIap#
ONIGNEd SAIVIS ¥I SUTIap#
QaTIVd SNIVLS I UTISP#

SSFOONS SALYLS ¥ SUTISP#

/+« DOIBSTD UOTITPUOD $591601d ON +/ 8
/+ Ssaaboad Buryew JoU JVIIAI «/ L

/+ ASNQ j0U ST BTPSW ™I +/ 9
/x ASnq ST BTPSW ¥I +/ &

/x S3ISTX3 UOTIDBUUOD JYIAI ON +/ ¥

/x P23D3UUOCDSTP HUTT x/ €
/+ Butpusd Inq pajxe3s ATINISSe00NS 4/ T

/+ POTTR} UOTIRIDdO +/ T
/» @327dwod pue NJFSSa0ONS &/ 0

‘snye3sar 23&g JepedAl
-

“xoe3s ay3 3o o uotjesado yoeIS B JO SMABIAS 4

0zx0 XEE0TINIH ¥I SuTIep#

PE:ED 60
a Lz unf

123nqTI3IVSeIAT {
/+ ‘on{®A Y3 JO YabusT ./ ‘uSIEA o34g

/% (MOT2q 23S) SNTeA SPOOPICH x/ ‘snteAa 13d234g

/x SWPU 2INGTIIIER JO Ybua1 «/ ‘ua 214g

/x ©INQTA3IL JO SWEU 03 IS3IUTOd «/ ‘aureu 13a934g
} 23INqTI3IIVSBIAI” 3I9013S 39padAy

/%

“393fqo &
SYI Ue JO 23NQTII3e SUO SPTOY 3Pyl 2IINONIIS © ST 2INQTIIIYSeIW] =YL «

e

$2I13N0NI3S eIBd SVI «

B T L L T PR R T ey

J22vY) T ooy (
/+ ©2TS JYIAT ueyl SSOT BIEP JO IUNOWY «/ ‘3300780D 234g

/x I92d 03 SATH 03 ITPSID JO JUNOUNY x/ !ITPSIDTTEAR 234g
/+ x22d WOIJ JTPSIDO JO JUNOUY 4/ !ITPIIDPUSS pom

/« pues 03 s1exoed JO ISTT «/ ‘s3e0ed AZquEISTT
/x SN TRUISIUT I0F 2IDBd «/ 1385oed EENEI X Ea1

/« SPT8TI dl AUTL «/

/+ UOTIOUNJ YOBQTIED O3 I23UTOd »/ !YOPETTed OPATTEDIT
/« "33 ‘sdA3 ‘s3e3s BUTUTEIUOD SHRTA «/ ‘sbery 2348

/y===ssssoooosssssssssssssossy
*

-x9sn ay3 Aq PaTITPOW 4
sq 10U pTNOYS pue 3oe3s syl AQq ATTEUISIUT PLSN ST BUTMOTTOF SUL

======================= ATUQ S [PUISJUI 104 ==================,/

/x desT a3j0wsy 4/ ‘desTx 234g

/x UO USISTT [[TM UOTIDSUUOD STYI dVST T@D0T x/ rdesT1 214g
) 3osuUUOSY” 3onIIS FOpadAl

/%
"uotjoeuuod 4 AUTL I0 dWIAI »

ue sbeuew 03 PasSn ST 2INIONIIS STYL "SINIDNIALS IDJUUCDAT JO UOTITUTISA »

{ (4SUTRIHORTTRIAT ’43ID2UUODIT) (FOPATTEIAI«) PTOA 33padA3
/¥

-50USISF5Y OPQTTED SYl UT MOTSQ USATE 4
ST SuoT3ounj 30e3s 9Y3l YITM UOTIONLUOD UT P3SN ST UOTIOUNF HOBQITED «

3Yy3 MOH ‘MOTaq USATH ST UOTIDUNJ DeqTTed Yyl I0J SUOTITUTISP UL x/

fsuTedyoedTTedII (
/+ 3D®3S 3JO SMIPIS «/ ‘snyeas snje3sat

/x ISTT 29TASP AISA0ODSTP 03 I93UTOd x/ !ISTIIDTASP ,3ISTTSDTASAIL
/+ poUIN3®x Bureq 39%oed 01 ISIUTOA «/ 13230ed +39%0RaII
/+ I2IINQ SAT®D09I UT BIEP IO YIBUST «/ fusxa pIoM

/« elep dde 031 pedouURADR ApERSITR IS3FNG SATIDY «/ {3Fngxa 11433148
/x OBQTTED BUTSNED JUSAH «/ 1quans JueAmIT

} 1on13s JopadAa
/x

‘pITeA aIe SPTSTI UOTUM SSUTWISISD JueAs Jo odAl oYL SwWT3 USATH Aue e
DITeA 81e SPTaTI T1® 30N - (uoTieoTrdde) oe3s ayj Jo IsAel raddn =yi 03 «
¥0B3S 2Y3 WOXF UOTIEPUIOIUT SSed O3 PaSN ST SINIONIIS ISjsweled XOBAITED x

13sT1901ASQAT {

1X3°S300.138

/+ ®3TT1 ¥QII UT 32TS POXTd / ! [HZIS LSIT HOIAHQ ¥I]ASP OJUISDTASQAIT

/% 3STT SY3 UT SWeIT ISCQUMN 4/ IsweqTu 34g
} 2on13s 3epadil

/%
‘sjusweTa OJuUT AISAODSTQ 997ASQ JO 3ISTT »

‘03uTe0TASAAT {
/+ UOTIBWIOFUT QIX «/![NET GIX X¥W ¥IIPTX 234g

/x PTX JO YIBUST ./ ‘uet 2348
/x 80TASP FO SS2IPPE 1TA-ZE «/ 135TASQY IPPYITABAIT

} jonajs jepadily
/x

cBWRUNDTU 3YJ 4

pue S3UTY SY3 SPTOU STYL "€¢ ST PTOTI PTX Y3 JO SZTS WINITXEU YL ,
- AI3A0DSTP BUTIND POISAODSTD S0TASD UYoes I0] pauinial UOTIBWIOIUT BUL «

11ppYenTARal {
{zEn pIoMa

‘[z]9Tn pIom
‘[ylen 234g
} uotun Fopadil

/%

$S8IppY 2012 ITA-ZTE «

13930edI {
/« 19pEay 2y3 103 °6I03§ ./ ![§T]I2PESU °14g

/+ I2pESY 2Yy3 UT S23Aq JO ISUMN «/ ‘ueTISpESy °34g

/x 393oed SUMO UDTUM UOTIDSUUOD O3 I3JUTOd &/ !UTBTIO ,3DBUUODIT

-zakel xaddn ay3 Aq PSTITPOW 4
5q j0u prnoys pue xoe3s oy3 Aq A[[PUISIUT PISn ST BUIMOTTOF SUL «

Y
—====================== ATUQ 9SO [BUIDIU] 10J ==================,/

B tus| pIoM
‘33ng 1349349

/s
‘7Inq uT $23Aq JO ISCUNU Syl S8IEDTPUT PISTI «

usT pue puss 03 e3EP FJO I23INg © 03 Jutod 03 PaISN ST PIBTI JING SUL «/

tspou AZ3u=ISTT
/x

soe3s ay3 Aq ATTRUILIUT
PSSN ST 3I "2IN3dNIIS 2Y3 UT PTSTI 3ISITI Y3 o ISTW PTSTI SPOU YL +/

} 393oediI” 3onI3s 3opadAl
/%

-sjesoed @il BuTpuss I10J 2INIONIIS IBAORA «

£308UN0DIT 303UUOSY” 390IIS JopedAl
/x

5In35013S 305UUODAT Y3 JO UOTIRIRTODP PIBMIOL «/

{A23UEISTT {

{UTTEs AI3UFISTT 3O0I3S
IUITdx ATIUFISTT 3IDNIIS

PEIERI60
ag Lg unf

/x

A\.?e 8% O {RzonpSRIIT (
13oegTTED Yoed]TRIATSNDSIAI

/s UOT3OUNZ YOEQTTED 03 ISJUTOd «/

s3Tnsex BUTUTEIUOD 183FNG OF I3UTOd «/
/s 22ZTS 1233Nq ITNSSI PSPS2OXS JTNSST IT EMML 39S «/

1nsax
{MOTAT3A0

1342348
°34g

1X)°S10N13S

/+ uoT3EISdO JO SPOD UINFSY x/ tspod3ax 214g
/x I9330Q SITNSSI OIUT 13SIJO0 +/ 1385330 pIom

/+ "ISTT 2INS3I 2Y3 UT SWSIT JO ISCQUMN 4/ fus1ISTT pIoM
/s I933ng 3TNS8x @Yl ul S$23Aq JO ISQUMU TENIDY x/ ‘uaT3TNSax pIom

/s I333NQ 3ITNSSI Y3 JO 8ZTIS x/ !92ZISING3IINsSax paom

/x 3TNS21 Ax3nb SU3 103 SPIST «/

/+ Azonb syj HUTUTEIUOD I8IINQG 03 SIUTOd 4/ ‘gnghzenb 13ge3Ag
/+ Azenb ay3 jo yabus1 1PIOL x/ ‘ua7hIanb 231kg

/x

Azemb sy3 uUT 93AQ JO ISUMU TI0] YA SUTEIUOD - USTAISND

sweu a3nqrIlle - s23Aq .YibusT. «

swreu 83nqTilIe FO UIBUST - 23K T
sureu sseTo - $214q LUIBUST. «

suwreu sse1d 30 YIbusT - S3AQ T

:SMOTTOF S® ST 3T patrenb HuTeq ST SNTRA SSOUM 2INGTAIIL
SseTo pue sueu SSeTD Y3 SUTRIUOD 193ING ATend BYL °SPTISTI AISND +/

)
AzsnpseraI” 3onI3s JopedAl

/%
210350135 AISNOSEIAI SY3 JO UOTITUTISP TBNIDY &

¢ (SN3e3SAI) (340eATTeDATSNDSRIAT,) PTOA 32padia
1AzenDSEIAT ATSNOSEIIT 10NIIS JopadAl

/x
2IM70MI3S SY3 UT SSN 103 PauUTISP oq ued adA] FDBQITED B JeUI

os soTzend S¥I butwrojied 103 PSS SINIONIAS B JO UOTIBIRTISP PIBMIOL

“““ =<y

1309(qOSeIaT (

/. S93InqiIjje Jo Aeire ue 03 isjutod ¥ ./ (SQTIIIR 42INQTIIIVSEIAT
/x S9INQTIIIE JO ISQUIN «/ ¢SATIIIVU °34g

/. Suweu 303(qo 3O YabueT 4/ tuat 214g

/x 2392[qo0 JO Bureu 03 I33UTOd «/ faureu 1342349

} 103(qoSeIII” 3onI3S FepadAa
/x

‘18A19S SYI «
Teoo1 ey3 Aq pabeuew 308(qo SYI ue 103 26e103S ST 303[COSEIWT SUL »

BT T 00 M, JT0 T2 'UH, *

‘TT'IIOSY MYHO ¥I'ONINIS ¥dSA gI¥LLY SVI *
)} = [1ButIasOTTSY 80

IIDSY UT .DIIOM OTTSH., Butias zesn ue jo Srdurexy

Butiys 914q yabusT ‘yabusT 93Aq [‘39S Ieud 93Aq T ‘2dA3 23Aq T«
:Butays 1980

usATH ST BuTIls Iesn e 3o oTdwexs UY "UOTILOTITOSdS AWIAI U3 3O €°F
UOT3I08S UT P2qTIOSep JPUWIO] UOTSSTWSURI} 3Y3J UO Paseq enfea 23nqriiie

ue jusssidsx UOTUM S33AQ Syl [TE SUTEIUOD PISTJ SNTBA YL "8nTeA 4
23nqT3330 Byl I03 ¥WI SY3 IBA0 JUSS S2IAQ [ENIOR Y3 SIUSSSIASIT UDTUM «

BUTIIS Pepod pAeY B ST 2IN3IONIAIS SINQTIIIYSEIII 2U3 3O PISTI onTeA UL «/

“MOTOq 4

PEIEPI60
J.,w FN ::._H.

Beyond-Security’s SecuriTeam.com

SecuriTeam Home
About SecuriTeam
Ask the Team
Advertising info
Security News
Security Reviews

Exploits
Tools

UNIX focus
Windows NT focus

Search (k

1.
PHP3/PHP4
Format String
vulnerability
exposes web
servers to

machine

compromise
2. Siemens

HiNet Phone

vulnerable to

aDoS

3. Cisco PIX

Firewall

'SMTP
content’ fix

found to be

flawed

4. Scp file
transfer hole

5. Cisco

Secure PIX

Firewall

Mailguard
Vulnerability
(Patch

available)

DA E-Mail
E-mail IhiS

article to a.

friend

Send us

comments

Title 28/9/2000

PalmOS Password Retrieval and Decoding

Summary

PalmOS offers a built-in Security application, which is used for the
legitimate user to protect and hide records from unauthorized users by
means of a password. In all basic built-in applications (Address, Date
Book, Memo Pad, and To Do List), individual records can be marked as

"Private" and will only be accessible if the correct password is entered.
It is possible to obtain an encoded form of the password, determine
the actual password due to a weak, reversible encoding scheme, and access

a users private data. In order for this attack to be successful, the

attacker must have physical access to the target Palm device.
The threat of physical attacks internal to a company is very real and
this advisory makes the point that security is not limited to the
network/internet arena. The private records often contain passwords,
financial data, and company confidential information. @stake’s experience with
physical audits has revealed that most users of Palm or other portable
devices do not realize that their private information could possibly be
accessed by unauthorized users.

Details

During the HotSync process, the Palm device sends an encoded form of
the password over the serial, IR, or network ports to the HotSync Manager or HotSync

Network Server on the desktop. The password is transmitted to enable the Palm Desktop

program to protect the users private records when being accessed on the desktop
machine. However, based on an encoding scheme of XOR’ing against a constant block

of data, the encoded password is easily decoded into the actual ASCII version of the

password. The encoded block is also stored on the Palm device in the Unsaved
Preferences database, readable by any application on the Palm device.

The transfer of a secret component (i.e. password), even if it is encoded or obfuscated,

over accessible buses (serial, IR, or network) is a very risky design decision and is

oftentimes considered a design flaw. It is an unfortunate common practice for

applications to simply obfuscate passwords instead of using encryption. Without proper

encryption methodologies in place, the task of determining the secret data is greatly

simplified as shown in this research.

This advisory is an attempt to remind users and developers of the common problem of

storing secrets and the reliance on simple obfuscation.

Technical Description:

The password is set by the legitimate user with the Security application. The ASCII
password has a maximum length of 31 characters. Regardless of the length of the ASCII

password, the resultant encoded block is always 32 bytes.

It is possible to obtain the encoded password block in a number of

ways:

1. Retrieve from the "Unsaved Preferences" database on the Palm

device.
2. Monitor the serial or network traffic during an actual HotSync.
3. Imitate the initial HotSync negotiation sequence in order to obtain the password
(which is transmitted by the target device). This is demonstrated in the proof-of-concept
tool written by @stake for the PalmOS platform.

The Palm desktop software makes use of the Serial Link Protocol (SLP) to transfer

information between itself and the Palm device. Each SLP packet consists of a packet
header, client data of variable size, and a packet footer [Palm OS Programmer’s

Companion, pg. 255]. During the HotSync negotiation process, one particular SLP
packet’s client data consists of a structure that contains the encoded password block:

struct {

Ulnt8 header[4];

Ulnt8 exec_buf[6];

Int32 userID; // 0

Int32 viewerID; // 4

Int32 lastSyncPC; // 8
Ulnt8 successfulSyncDate[8]; // 12, time_t

Ulnt8 lastSyncDate[8]; // 20, time_t

UlInt8 userLen; // 28

Ulnt8 passwordLen; // 29
Ulnt8 username[128]; // 30 -> userLen

Ulnt8 password[128];

1

Two methods are used to encode the ASCII password depending on its length. For
passwords of 4 characters or less, an index is calculated based on the length of the
password and the string is XOR’ed against a 32-byte constant block. For passwords
greater than 4 characters, the string is padded to 32 bytes and run through four rounds of
a function which XOR’s against a 64-byte constant block. It is unknown why disparate
methods were implemented. By understanding the encoding schema used, it is possible

to essentially run the routines in reverse to decode the password, as shown in our
proof-of-concept tools. Details of each method are described below.

Neither encoding schema makes use of the username, user ID, or unique serial number

of the Palm device. A common practice often used for copy-protection purposes is to
use a unique identifier as input into an encoding or encryption algorithm, which

PalmOS does not do. The resultant encoded password block is completely independent

of the Palm device used and makes it easier to determine the original ASCII password

from the block.

Passwords of 4 characters or less:

By comparing the encoded password blocks of various short length passwords, it was

determined that a 32-byte constant was being XOR’ed against the ASCII password in

the following fashion:

56 8C D2 3E 99 4B OF 88 09 02 134507 04 13 44
0C 08 135A 321513 5D D2 17 EA D3 B5 DF 55 63

Encoded password block of ASCII password test’

090213450704 13440C 08 13 5A 321513 5D
D2 17 EA D3 B5 DF 55 63 22 E9 A1 4A 99 4B OF 88

32-byte constant block for use with passwords of length 4
characters or less

Let A_j be the jth byte of A, the ASCII password
Let B_k be the kth byte of B, the 32-byte constant block
Let C_m be the mth byte of C, the encoded password block

The starting index, i, into the constant block where the XOR’ing should begin is

calculated by the following:

i=(A_0 + strlen(A)) % 32d;

The encoded password block is then created:

A_0XORB_i
_1 XOR B_i+1
_2 XOR B_i+2
_3 XOR B_i+3
_i+4 O

O
I
O
I
O
O

-
k
a
l
\
)
r
—
o

o

n
n

0
5
'
3
>
>
3
>

C_31 =B_i+31 (wrapping around to the beginning of the constant

block if necessary)

Example: 0x56 = 0x74 (’'t’) XOR 0x22

0x8C = 0x65 ("e’) XOR 0xE9
0xD2 =0x73 (’s’) XOR 0xAl
0x3E = 0x74 (’t’) XOR 0x4A

Passwords greater than 4 characters:

The encoding scheme for long length passwords (up to 31 characters in length) is more
complicated than for short length passwords, although it, too, is reversible.

First, the ASCII string is padded to 32 bytes in the following fashion:

Let A_j be the jth byte of A, the ASCII password

len = strlen(A);

while (len < 32)

{
for (i =len;i<len * 2; ++i)

pass[i] = pass[i - len] + len; // increment each character by

len

len =len * 2;

}

Example: A_0=0x74 (t’)
A_1=0x65(e’)
A_2=0x73(s")
A_3=0x74(Ct)
A_4=0x61(a’)
A_5=0x79
A_6 =0x6A
A_7=0x78
A_8=0x79
A_9 =0x66
A_10=0x7E

The resultant 32-byte array, A, is then passed through four rounds of a function which
XOR’s against a 64-byte constant:

B15635 1A 9C 98 80 84 37 A73D 61 7F 2E E8 76
2A F2 A584 07 C7 EC 27 6F 7D 04 CD 52 IE CD 5B
B3 29 76 66 D9 5E 4B CA 63 72 6F D2 FD 25 E6 7B
C5 66 B3 D3 45 9A AF DA 29 86 22 6E B8 03 62 BC

Let B_k be the kth byte of B, the 64-byte constant block
Let m =2, 16, 24, 8 for each of the four rounds

index = (A_m + A_m+1) & 0x3F; // 6 LSB

shift = (A_m+2 + A_m+3) & 0x7;// 3 LSB

for (i=0;1<32; ++)

{
if (m == 32) m = 0; // wrap around to beginning
if (index == 64) index = 0; // wrap around to beginning

temp = B_index; // xy
temp <<=8;
temp |= B_index; // xyxy

temp >>= shift;
A_m "= (unsigned char) temp;

++m;
++index;

}

The resultant 32-byte encoded password block does not have any remnants of the
constant block as the short length encoding method does. Although the block appears to
be "random", it is indeed reversible with minimal computing resources as shown in our
proof-of-concept tools.

18 0A 433A 177D A3 CAD79D 75 D2 D3 C8 A5 CF
F1 710703 5A 524B B9 70 2D B2 D1 DF A5 54 07

Encoded password block of ASCII password ’testa’

Temporary Solution:

The Security application provides functionality to "turn off and lock
device". If the Palm device is turned off and locked using this feature,

the device will not be operational until the correct password is entered.
This will prevent an unauthorized user from running applications on the
device (hence preventing them from starting the HotSync process). This
workaround is only useful if the legitimate user can be sure that the
attacker hasn’t attained the system password already - simply change the
password to be sure. It may be possible to bypass the system lock-out mechanism by
entering into the PalmOS debug mode before the lock-out features are called. This may
allow an attacker to step over the security code during a debugging session.

Another possible solution is the use of third-party encryption solutions, such as Secure
Memopad by Certicom, which implement strong and tested cryptological algorithms to
protect the data of certain Palm applications.

Vendor Response:

The following is the response @stake received from Palm Inc.

Thanks you for your diligence in testing our products thoroughly, we appreciate your

efforts.

We have taken a close look at your advisory in detail and while this is certainly
something we want to address for the future, we do not believe this poses a major risk to
all our users for the following reasons:
It is not easy for someone to capture passwords accidentally, you need to have access to
the device and access to the OS/software as well to run the hotsync and thence capture
the data. It would also need to be a malicious, funded, attack and some data points need

to be known to the attacker, making the chances of such an attack very low, but not

impossible in everyday life. However we do appreciate the risk involved if the attacker
is involved in some form of industrial espionage for example.

The simple way to protect against such an attack is to use products from Force.com to
keep the device about your person, or to use any of the security programs such as
OnlyMe or SignOn to secure access, (as improvements over the supplied software
security program) or data encryption programs such as Jaws Technology encryptors,
Securememopad from Certicom to encrypt data, or Ntru encryption tools.

However we agree that any potential security issue needs to be taken seriously and we
have investigated this problem and expect to have both a patch for older systems, and a
solution for future releases of the PalmOS.

We respectfully ask you to post our response with your advisory, and thank you for
contributing to the secure future of Palm devices.

Proof-of-Concept Code:

Proof-of-concept tools have been written for the Windows 9x/NT and PalmOS 3.3 and
greater platforms which demonstrate the simplicity of obtaining the encoded password
block from the target device and the weak encoding scheme used to obfuscate the
password. The PC version, "PalmCrypt", will encode and decode ASCII passwords to
encoded password blocks and vice versa. The PalmOS version, "NotSync", will imitate
the initial stages of the HotSync process via the IR port, retrieve the encoded password
block of the target device, and decode and display the
resultant ASCII password.

Source code and binaries for the proof-of-concept tools can be found at:

http://www.atstake.com/research/advisories/2000/notsync.zip
http://www.atstake.com/research/advisories/2000/palmcrypt.zip

Successfully using NotSync requires two Palm devices: One device running the
NotSync application and the other being the target device in which the password is

desired.

Facing the two devices head-to-head, run the HotSync application on the target Palm
device and initiate an "IR to a PC/Handheld" HotSync. NotSync, running on the other
device, will obtain the legitimate user’s encoded password block, decode the password,

and display the result on the screen.

Typical usage and output for PalmCrypt is shown below:

E:\>palmcrypt

PalmOS Password Codec
kingpin @atstake.com
@stake Research Labs
http://www atstake.com/research

August 2000

Usage: palmerypt -[e | d] <ASCII | password block>

E:\>palmcrypt -e test

PalmOS Password Codec
kingpin @atstake.com
@stake Research Labs
http://www.atstake.com/research
August 2000

0x56 0x8C 0xD2 0x3E 0x99 0x4B 0xOF 0x88 [V..>.K..]
0x09 0x02 0x13 0x45 0x07 0x04 0x13 0x44 [...E...D]
0x0C 0x08 0x13 0x5A 0x32 0x15 0x13 0x5D [...Z2..]]
0xD2 0x17 0xEA 0xD3 0xB5 0xDF 0x55 0x63 [......Uc]

E:\>palmerypt -d
568CD23E994B0F8809021345070413440C08135A3215135DD217EAD3B5DF
5563

PalmOS Password Codec
kingpin @atstake.com
@stake Research Labs
http://www.atstake.com/research
August 2000

0x74 0x65 0x73 0x74 [test]

Additional information

The information has been provided by @Stake

Copyright © 1998-2000 Beyond Security Ltd. All rights reserved.
Terms of Use Site Privacy Statement.

-~ DOWNLDAD
UPDATES NOW

THE VACCINE FOR E-BUSINESS

PRODUCTS | BUY/TRY | SOLUTIONS | NAILARS | SERVICES | PARTNERS | ABOUT NAI | NAI HOME

Virus Alerts

Anti-Virus Updates

Virus Library

» Virus Info Center

Recent Updates

Joke Programs

Trojans

Hoaxes

Web Viruses

‘White Papers

AVERT Research Center

AVERT Weblmmune

SecureCast

SITE SEARCH

Profile

Virus Name
PalmOS/Phage.963

Aliases
Palm Virus

Phage 1.0

Variants

Name Type Sub Type Differences

PDA This is the initial virus dropper, 1325

PalmOS/Phage. 1325.dr Virus e ie bytes, named PHAGE.PRC.

Description Added

9/21/00 4:38:41 PM

Virus Information

Discovery Date: 9/21/00

Origin: IRC Chat Room

Length: 1,325 bytes

Type: Virus

SubType: PDA Device

Risk Assessment: Low

Minimum Engine: 4.0.70

Minimum Dat: 4097

DAT Release Date: 09/27/2000

Virus Characteristics
McAfee AVERT discovered this virus Sept 21, 2000.

This is the first virus designed for PalmOS.

‘When an infected application is run, the screen is filled in dark gray box and then
the program terminates. This virus will infect all third party applications on the
PDA device. This virus overwrites the st section in the host .PRC file.

In testing, when a new program is copied to the Palm system via IR transfer, this
program will execute normally. If another application which is already infected is
run, the newly transferred file will then become infected.

Symptoms
Attempts to launch an application will result in the screen filled with a dark gray

box pattern and then closes. The desired application fails to launch.

Method Of Infection
This virus will directly infect other PalmOS applications. Launching this program
either accidentally or intentionally will result in the actions mentioned in the
characteristics section of this description.

This virus copies its body to the "code 1’ resource of any other apps it finds. The
original resource section is replaced with the virus code such that it is possible for
infected applications to be smaller than the same program prior to infection.

Removal Instructions
Delete any file which contains this detection. Also delete phage.prc, if it exists,
from your palm backup folder on your pc so you don’t re-sync it back to your
palm. This second step is necessary since the backup bit is set for phage.

Recovery from this threat requires a hard-reset followed by a hot-sync of the PDA

device.

Dlm05 ASLTT (hact

20
28
30
38
40
48
50
58
60
68
70
78
80
88
90
98
A0
A8
BO
B8
co
c8
DO
D8
EO
E8
FO
F8 SN

C
N
U
E
V
A
S
H
U
N

L
2

K
Q
F
-
O

K
I
O
H
P
W
O
R
~
—
 —

B

D
R

E
R
P
N

2
@
~

N
S
O

M
W

O
B

0
v
b
W

G
O

N
R
U
O
T
N
T
G

W

D
O
o
O
m
M
O
P
O
E
m
M
Y

w
A
m
M
Y

M
Y

m
a
—
n
R
Q

W

24
2C
34
3C
44
ac
54
5C
64
6C
74
7C
84
8C
94
o¢
Ad
AC
B4
BC
c4
cc
D4
DC
E4
EC
F4
FC

I
E

R
ER
Y

—
r

Q
-

H
E
U
O
A

B
©

£
O

b
G
O

e

B
R

25
2D
35
3D
45
4D
55
5D
65
6D
75
7D
85
8D
95
9D
A5
AD

B5
BD
C5
CD:
D5
DD
E5
ED

F5
FD

~
e
c

83

0
—
C
2
H
E
I
l

U
1
l

o®

K
O
t
k

2
K
O
 R

T
1

o
g

e
O

26
2E
36
3E
46
4E
56
5E
66
6E
76
7E
86
8E
96
9E
A6
AE

B6
BE

619
CE
D6
DE

E6
EE
F6
FE

&
T
o
M
Y

T
O
R
E
N
R
A
@
-
-
D
i
f
p
t

!
I
8

>
I
Z
H
V
 o

27

2F

37

3F

47

4F

57

5F

67

6F

77

TF

87

8F

97

9F

A7

AF

B7

BF

c7

(6224

D7

DF

E7

EF

E7

FF

I
G
O
0

o0
Ql

T
O
o
Q
W
I
~

-
K
k

)

X
H
i
Q
Q
 o

Windows

Window Data Structures

struct WindowType * nextWindow;

} WindowType;

Field Descriptions

displayWidthv20 Width of the window in pre OS 3.5 devices. In

0S 3.5, use WinGetDisplayExtent to

return the window width.

displayHeightV20Height of the window in pre OS 3.5 devices.
In OS 3.5, use WinGetDisplayExtent to

return the window height.

displayAddrVv20 Pointer to the window display memory buffer
in pre OS 3.5 devices. In OS 3.5 or later, call

WinGetBitmap and then BmpGetBits to

obtain the display’s memory buffer.

windowFlags Window attributes (see WindowFlagsType).

windowBounds Display-relative bounds of the window. Use
WinGetWindowBounds and
WinSetWindowBounds to retrieve and set
this value.

clippingBounds Bounds for clipping any drawing within the
window. Use WinGetClip and WinSetClip
to retrieve and set this value.

bitmapP Pointer to the window bitmap, which holds

the window’s contents. Use WinGetBitmap

to retrieve this value.

frameType Frame attributes; see FrameBitsType.

drawStateP Pointer to a state of the current transfer mode,

pattern mode, font, underline mode, and

colors. See DrawStateType.

Only one drawing state exists in the system.
Each window points to the same structure.

nextWindow Pointer to the next window in a linked list of

windows. This linked list of windows is called

the active window list.

Palm OS SDK Reference 807

/**

* Compress a Bitmap (Tbmp or tAIB) resource.
*

© @param rcbmp a reference to the Palm Computing resource data.

* @param compress compression style?

* @param colortable does a color table need to be generated?

*f
static void
BMP_CompressBitmap (RCBITMAP *rcbmp,

int compress,
BOOL colortable)

{
unsigned char *bits;
int size, msize, i, j, k, flag;

// determine how much memory is required for compression (hopefully less)

size = 2 + (colortable? COLOR_TABLE_SIZE : 0);

msize = size + ((rcbmp->cbRow + ((rcbmp->cbRow + 7) / 8)) * rcbmp->cy);

// allocat memory and clear

bits = (unsigned char *)malloc(msize * sizeof (unsigned char));

memset (bits, 0, msize * sizeof (unsigned char));

// do the compression (at least, attempt it)

for (i=0; i<rcbmp->cy; i++) {

; j<rcbmp->cbRow; j++) {

if ((i == 0) |]
(rcbmp->pbBits([(i * rcbmp->cbRow) + j] !=

rcbmp->pbBits[((1-1) * rcbmp->cbRow) + jl)) {
flag \: (0x80 >> (3 & 7));

}
if (((3 & 7) == 7) || (3 == (rcbmp->cbRow-1))) {

bits[size++] = (unsigned char) flag;

for (k = (J & ~7); k <= j; ++k) {

if (((flag <<= 1) & 0x100) != 0)

bits[size++] = rcbmp->pbBits([i * rcbmp->cbRow + k];

}
flag = 0;

}

}

// if we must compress, or if it was worth it, save!

if (compress == rwForceCompress || size < rcbmp->cbDst) {

// do we have a color table?

if (colortable) {

int 1i;

// copy the color table (dont forget it!)

for (i=0; i<COLOR_TABLE_SIZE; i++)

bits[i] = rcbmp->pbBits[i];

bits[COLOR_TABLE_SIZE] (unsigned char) (size >> 8);

bits[COLOR_TABLE_SIZE+1] = (unsigned char)size;

}
else {

bits[0] = (unsigned char) ((size & 0xff00) >> 8);
bits[1l] = (unsigned char) (gize & O0x00ff);

}

// change the data chunk to the newly compressed data

free (rcbmp->pbBits) ;

rcbmp->££ |= 0x8000;
rcbmp->pbBits = bits;

rcbmp->cbDst = size;

}
else

free(bits);

SECTION 4
LCD CONTROLLER MODULE

The liquid crystal display controller (LCDC) provides display data for an external LCD driver
or LCD panel module. The key features include the following:

e Share system and display memory, no dedicated video memory required

 Standard panel interface for common LCD drivers

» Supports single (non-split) screen monochrome LCD panels

* Fast flyby type, 16-bit wide, burst-DMA screen refresh transfers from system memory

* Maximum display size is 1024x512; however, the typical non-split panel sizes are
320x240 and 640x200

* Panel interface: 1-, 2-, or 4-bit wide LCD data bus

» Black and white, or 4 simultaneous gray levels out of a palette of 7

* Hardware blinking cursor; programmable up to 32 x 32 pixels in size

* Hardware panning (soft horizontal scrolling)

The LCDC fetches display data directly from system memory through periodic DMA transfer
cycles. The bus bandwidth used by the LCDC is low, thereby enabling the MC68EC000 core
to have sufficient computing bandwidth for other tasks.

4.1 LCDC SYSTEM OVERVIEW

The LCDC is built of six basic blocks, namely MPU interface registers, screen DMA control-
ler, line buffer, cursor logic, frame-rate control and LCD panel interface as shown in Figure

4-1.

4.1.1 MPU Interface

The MPU interface consists of all control registers that enable all different features of the
LCDC. This block is connected directly to the 68K bus.

4.1.2 Direct Memory Access (DMA)

The DMA generates a bus-request signal to the MC68ECO000 periodically and, upon receiv-
ing a bus grant, performs a 16- or 8-word memory burst to fill the line buffer. The number of
DMA clock cycles per transfer is programmable (1, 2, 3, or 4 clocks/transfer), which makes
it more versatile to support systems with memory of different speeds.

MOTOROLA MC68328 DRAGONBALL PROCESSOR USER’S MANUAL 4-1

LCD Controller

Sdstem LCD
lock Clock

(fast) (slow)

Address Ut Lo

Data

'
LCD

e _.E—‘F)_’ 5
2

eore [Regletors [4 2
BG g Frame 9

> _Rate
Control

SIM28 Screen [¢ *
DMA Ly{ Cursor

Logic

cs OE *
3 Line Buffer

System

Memory

Figure 4-1. SystemiBIock Diagram of LCDC

4.1.3 Line Buffer

The line buffer collects display data from system memory during DMA cycles, and outputs
it to the cursor-logic block. The input is synchronized with the fast DMA clock, while the out-
put is synchronized to the relatively slow LCD pixel clock.

4.1.4 Cursor Control Logic

The cursor control logic (when enabled) generates a block-shaped cursor on the display
screen. Users can adjust the cursor height and width to any number between 1 to 31. The
cursor can be full black or reversed video, and the blinking rate is adjustable when the blink-
enable bit is on.

4.1.5 Frame Rate Control (FRC)

The frame rate control (FRC) is used primarily for gray-scale display and can generate up
to 4 gray levels from the choice of 7 density levels (0, 1/4, 5/16, 1/2, 11/16, 3/4, 1 as in Table
4-3). The density level corresponds to the number of times the pixel is being turned on when

the display is refreshed frame by frame. Because the crystal formulations and driving volt-
age may vary, the visual gray quality can be tuned by programming the gray palette-map-
ping register (GPMR) to obtain the best effect.

Because blinking or flickering will occur if all LCD pixel cells are synchronized, it is essential
to program two 4-bit numbers, namely Xoff and Yoff in the FRC offset register (FOSR), to
minimize flickering. As a general rule, select odd numbers that differ by 2. The optimal offset

4-2 MC68328 DRAGONBALL PROCESSOR USER’S MANUAL MOTOROLA

LCD Controller

values could vary among different models of LCD panels—even from the same manufac-
turer—because of different inter-pixel crosstalk characteristics.

4.1.6 LCD Interface

The LCD interface logic packs the display data in the correct size and outputs it to the LCD
panel data bus. The polarity of FRM, LP, and SCLK signals as well as pixel data can all be
programmable to suit different types of LCD panel requirements.

4.2 INTERFACING LCDC WITH LCD PANEL

LSCLK LCD Panel Module
MC68328 > | po

[=————™ LDi
> LD2
——— LD3

Figure 4-2. LCD Module Interface Signals

LCD Data Bus (LD3-LDO)

This output bus transfers pixel data to the LCD panel for display. Depending on which

LCD panel mode was selected, data is arranged differently on the bus for each mode. Us-
ers can program the output pixel data to be negated. See the POLCF register description
for details.

First Line Marker (LFLM)

This signal indicates the start of a new display frame. The LFLM signal becomes active
after the first line pulse of the frame and remains active until the next line pulse, at which

point it de-asserts and remains inactive until the next frame. Users can program the LFLM

signal using software to be active-high or active-low. See the POLCF register description
for details.

Line Pulse (LP)

This signal latches a line of shifted data onto the LCD panel. It becomes active when a

line of pixel data is clocked into LCD panels and stays asserted for a duration of 8 pixel
clock periods. Users can program the LP signal using software to be either active-high or
active-low. See the POLCF register description for details.

MOTOROLA MC68328 DRAGONBALL PROCESSOR USER’S MANUAL 4-3

LCD Controller

Shift Clock (LSCLK)
This is the clock output that is synchronized to the LCD panel output data. Users can pro-
gram the LSCLK signal using software to be either active-high or active-low. See the
POLCF register description for details.

Alternate Crystal Direction (LACD)

This output is toggled to alternate the crystal polarization on the panel. Users can program

this signal to toggle at a period of 1 to 16 frames. The alternate crystal direction (LACD,
also called M) pin will toggle after a pre-programmed number of FLM pulses. Users can
program the ACD rate-control register (ACDRC) so that LACD will toggle once every 1 to
16 frames. The targeted number of frames is equal to the alternation code’s 4-bit value
plus one. The default value for ACDRC is zero; that is, LACD will toggle on every frame.
The LACD output signal is synchronized with the trailing (falling) edge of the line pulse
(LP) enclosed by FLM.

Table 4-1. ACDRC Value and Number of Cycles

ACDRC No of Cycles

0000 i

0001 2

0010 3

0100 5

1000 9

1111 16

4.3 PANEL I/F TIMING

The LCDC signal continuously pumps the pixel data into the LCD panel via the LCD data
bus. The bus is timed by shift clock (LSCLK), line pulse (LLP) and first line marker (LFLM).
The LSCLK clocks the pixel data into the display drivers’ internal-shift register. The LP
latches the shifted pixel data into a wide latch at the end of a line while the LFLM marks the
first line of the displayed page.

The LCDC signal is designed for great flexibility to support most of the monochrome LCD
panels available in the marketplace. Figure 4-3 shows the LCD interface timing for 8-bit LCD
data-bus operations.

Figure 4-3 shows the LCD interface timing for 4-, 2-, and 1-bit LCD data-bus operations.

The line pulse signifies the end of the current line of serial data. The LLP enclosed by LFLM
signal marks the end of the first line of the current frame.

Some LCD panels may use an active-low LFLM signal, LLP signal, LSCLK signal, and
reversed pixel data. To change the polarities of these signals, set the first-line marker polar-
ity (FLMPOL), line-pulse polarity (LPPOL), shift-clock polarity (SCLKPOL), and pixel polarity

4-4 MC68328 DRAGONBALL PROCESSOR USER’S MANUAL MOTOROLA

LCD Controller

(PIXPOL) bits to 1, respectively. The LLP and LFLM timing are similar for all panel modes
supported by LCDC.

In additional to the interface timing pins discussed above, an alternate crystal direction
(LACD) pin in LCDC will toggle after a pre-programmed number of LFLM pulses. This pin
prevents crystal degradation in the LCD panel.

MOTOROLA MC68328 DRAGONBALL PROCESSOR USER’S MANUAL 4-5

LCD Controller

(a) 4-Bit LCD Data Bus (PBSIZ=10)

FLM 1 [1
LP _fl LINE 1 H}INEZ I—ILINE3 I—LLINEA ' |-|L|NEn HUNE1 |-|

P gl
1 2 3 39 40 m/4-1 m/4

SCK___ [T LT 1_ g e

LDO —XXXXX j0.01 X i041 X (o8] {0152 X[0.156] 10.m-8) X 0m-4 XX

LD1 XXX 0.1 X 105 X 1081 CoasaXosny. {om X ems XXX

LD2 XXX 1021 X_10.61 X (0.10] 10,1541 X[0.158))" 1o.m-61X10m-2) XXXX

LD3 XXX 10,31 X_10.71 X {0111 {155 X (0,159 {10.m51X0.m 1 XX XX

(b) 2-Bit LCD Data Bus (PBSIZ=01)

FLM 1 1
LP _flLINE1 |-|L|NE2 flLINES]-lL!NEA HLINEH HLINE1 fl

P [M
1 2 3 79 80 m/2-1 m2

SCLk___ 1L [LI 1 g 5 g gy | [

LDO XXX 0.0 X 1021 X_[0.4] ¥ 101561 X [0.158]) 1o.m-apj0m2D KX

LD1 “XXXXX G011 X 108 X (051) {Eas7rX10.159)" o3 Xom XXX

(c) 1-Bit LCD Data Bus (PBSIZ=00)

FLM 1 1
Lp _[[UNET [LNE2 [UNES lLNe [IUNER [LNET

Lp 1] [

1 2 3 79 80 m1 o om
TR o I e O o B o S s s B

LDO0 XXXXX (0.0 X101 X _(o2] oz Xy, {om2Xom XXX

Figure 4-3. LCD Interface Timing for 4-, 2-, and 1-Bit Data Widths

4-6 MC68328 DRAGONBALL PROCESSOR USER’S MANUAL MOTOROLA

LCD Controller

4.4 OPERATION OVERVIEW

4.5 DISPLAY CONTROL

The LCDC signal drives single-screen monochrome STN LCD panels with up to 1024x512
pixels in the gray-scale mode at a refresh rate of 60-70 Hz. In any case, the best efficiency
is achieved when the screen width is a multiple of the DMA controller's 16-bit bus width.
Because of LCD driver-technology limitations, large screens, such as 640x480, are usually
organized in spilt-screen format, which the MC68328 processor does not support. The
actual limit is the number of rows that require high driving voltage. The MC68328 processor
4-bit LCD interface will drive up to 240 rows with a maximum of 1024 columns.

4.5.1 LCD Screen Format

The screen width and height of the LCD panel are software-programmable. Figure 4-4
shows the relationship between the portion of a large graphics file displayed on screen vs.
the actual page. All units are measured in pixel counts in this figure.

~¢—— Virtual Page Width (VPW) e —

ScreenStarting Address
(SSA)

. ~4—— Screen Width (XMAX) ——»

g i = A S =

T E; b D
S z 98 38
& © | Cursor X Position | 5> o=
= 2 | (Cxo) oL *
£ c [
E @
=] 2 ’

@ Cursor Width
¢ v (CW) =

Figure 4-4. LCD Screen Format

The screen width (XMAX) and screen height (YMAX) registers specify the LCD panel size.
The LCD will start scanning the display memory at the location pointed to by the screen
starting address (SSA) register. Therefore, the LCD panel will display the shaded area in
Figure 4-4.

The virtual page width (VPW) and virtual page height (VPH) parameters specify the maxi-
mum page width and height, respectively. By changing the screen-starting address (SSA)
register, a screen-sized window can be vertically or horizontally scrolled (panned) anywhere

inside the virtual-page boundaries. The software must position the starting address (SSA)

properly so that the scanning logic’s system memory pointer (SMP) does not stretch beyond
VPW nor VPH. Otherwise, strange artifacts will display on the screen. The programmer uses
the VPH only for boundary checks. There is no VPH register internal to the LCDC.

MOTOROLA MC68328 DRAGONBALL PROCESSOR USER’S MANUAL 4-7

LCD Controller

4.5.2 Cursor Control Logic

To define the position of the hardware cursor, the LCDC maintains a vertical line counter
(YCNT) to keep track of the pixel's current vertical position. YCNT in conjunction with the
horizontal pixel counter (XCNT) specify the screen position of the current pixel data being
processed. When the pixel falls within a window specified by the cursor reference position
(CXP:10-bit register, CYP: 9-bit register), cursor width (CW:5-bit counter), and cursor height
(CH:5-bit counter), the original pixel bits (outputs of HSRA and B are affected but the latter’s
output is ignored, if not applicable) wil be passed transparently (cursor control bits=00),
replaced with full black, or a complement for reversed video (CC bits=01,10 respectively; 11
not allowed) if a static cursor is chosen (BK_EN=0). Reversed video is preferable for a static
cursor as it will block the original pixels if CC=01. A blinking cursor will display if BK_EN=1,
in which case the original signal and the cursor will alternate periodically.

4.5.3 Display Data Mapping

The LCDC supports 1-bit-per-pixel or 2-bits-per-pixel graphics mode. In the binary mode
(GS=0), each bit in the display memory corresponds to a pixel in the LCD panel. The corre-
sponding pixel on the screen is either fully on or fully off.

In 2-bit-per-pixel operations (GS=1), the frame-rate control circuitry inside the LCDC will

generate intermediate gray tones on the LCD panel by adjusting the densities of 1’s and 0’s
over many frames. A maximum of 4 gray levels can be simultaneously displayed on the LCD
screen.

The system memory data in both 1- and 2- bit-per-pixel modes are mapped as shown in Fig-
ure 4-5.

4.5.4 Gray Scale Generation

The LCDC is configured to drive only a single-screen monochrome LCD panel. It cannot
handle color STN or TFT panels. Users can configure the data bus size for the LCD panel
to 1-bit, 2-bit, or 4-bit by programming the LCD panel bus size (PBSIZ) register.

4.5.5 Gray Palette Mapping

Through a proprietary frame-rate control (FRC) algorithm, the LCDC can generate up to 4
simultaneous gray levels out of 7 available by first mapping the 2-bit data into four 3-bit gray
codes which then select 4 out of 7 bit densities from the gray palette table.

Figure 4-5 shows the mapping of the 2-bit pixel data into 3-bit gray codes. Bits GMN are
defined in the software-programmable gray palette mapping registers (GPMR). Each of the
four 3-bit codes obtained from the first table then selects a density level (0, 1/4, 5/16, 1/2,
11/16, 3/4 and 1) from the gray palette table as shown in Table 4-3.

Because crystal formulations and driving voltages vary, the visual gray effect may or may
not have a linear relationship to the frame rate. A logarithmic scale such as 0, 1/4, 1/2, and

1 might be more pleasing than a linear-spaced scale such as 0, 5/16, 11/16, and 1 for certain
graphics. A flexible mapping scheme lets users optimize the visual effect for the specific
panel or application.

4-8 MC68328 DRAGONBALL PROCESSOR USER’S MANUAL MOTOROLA

LCD Controller

LCD Drivers

(0,0) (1,00 (2,0) (X-1,0)

4
2
a
[a]
o
o |

©Y-1) [(1,Y-1) [@Y-1) (X-1,Y-1)

2 Bits Per Pixel Mode

7 6 5 4 3 2 1 0
(0,0) (1,0) (2,0) (3,0

Display

Mapping

l (X-4,Y-1) (X-3,Y-1) (X-2,Y-1) (X-1,Y-1)

System ROM/RAM

(Byte-oriented for clarity)

1 Bit Per Pixel Mode

A 6 5 4 3 2 1 0
(0,0) (1,0) (2,0) (3,0) (4,0) (5,0 (6,0) (7,0)

Display
Mapping

(X-8,Y-1) X7 Y1) | (X8 Y-1) | (X5Y-1) | OCAY-T) | (XBY-1) | (X2¥-1) | (X-1,%-1)

System ROM/RAM
(Byte-oriented for clarity)

Figure 4-5. Mapping of Memory Data on the Screen

MOTOROLA MC68328 DRAGONBALL PROCESSOR USER’S MANUAL

LCD Controller

Table 4-2. Gray Scale Code Mapping

Code Mapping

Data Gray code

00 G02G01G00

01 G12G11G10

10 G22G21G20

11 G32G31G30

Table 4-3. Gray Palette Selection

Gray Palette

Gray Code Density

000 0

001 1/4

010 5/16

011 1/2

100 11/16

101 3/4

110 1

111 1

4.5.6 FRC Offset Control

4.5.7 Cursor and Blinking Rate Control

4.5.8 Low-Power Mode

Some panels may have a signal called PANEL_OFF that turns off the panel for low-power
mode. In the MC68328 processor system, this signal is not supported. Instead, use a paral-
lel I/O pin to perform this function.

The software sequence to achieve PANEL_OFF using parallel I/O consists of 2 steps:

1. Turn off the VLCD (+15V or -15V) by I/O driving a transistor

2. Turn off the LCDON bit

To exit from LCDC-off mode:

1. Turn on the LCDON bit

2. Delay for 1-2ms

3. Turn on the VLCD by I/O driving a transistor

When setting the LCDON bit (register CKCON bit 7) to 1, LCDC itself will enter a low-power
mode by stopping its own pixel clock prior to the next line-buffer-fill DMA. Additional screen
DMA and display-refresh operations will then be stopped in this mode. When the LCDC is
switched back on, DMA and screen-refresh activities will resume in a synchronous fashion.

Software should check that the actual PANEL_OFF signal is de-asserted before setting
LCDONtoa 1.

4-10 MC68328 DRAGONBALL PROCESSOR USER’S MANUAL MOTOROLA

LCD Controller

4.6 DMA CONTROLLER OVERVIEW

The LCD DMA controller is a flyby type, 16-bit wide, fast-data transfer machine. Because
the LCD screen has to be refreshed continuously at a rate of about 50-70 Hz, in this case,
the pixel bits in the memory will be read and transferred to corresponding pixels on the
screen. To minimize the bus obstruction because of bus-sharing with the system, a burst
type and flyby transfer is therefore required. The refresh is divided into small packs of 8- or
16-word reads. Every time the internal line buffer needs data, it will assert the BR signal to
request the bus from the MC68EC000. Once the MCB8EC000 core grants the bus (i.e. BG
is asserted), the DMA controller will get control of the bus signal and issue 8- or 16-word
reads (see setting of CKCON register) from memory. The read data is then passed to the
next stage internally to generate the LCD timing (flyby). During the LCD access cycles, out-
put- enable and chip-select signals for the corresponding system SRAM chip will be
asserted by the chip-select logic inside the SIM. The minimum bus bandwidth obstruct can
be achieved by using zero LCD-access wait states (1 clock per access). See Section 4-8

Bandwidth Calculation and Saving for more details.

4.6.1 Basic Operation

As shown in Figure 4-6 and Figure 4-7, data is fetched from memory in a very efficient man-
ner. Each burst is limited to 8/16 words, which reduces possible latency for other peripherals
such as the interrupt controller. For example, the average time latency for LCDCLK = 5MHz
with 16-word burst is approximately 2.4us.

Y AVAVAVAVAVAVAVAVAVAVAN
I

BR

I I

I I

I I

I 1

1 |
| [
| I

| I BG

ADDRESS

DATA

i

I G

3 —

CS L

1 1
| |
I I

T T

I I

I I

| 1
| |

Figure 4-6. Three Clock per LCD DMA Transfer (2 Wait States)

MOTOROLA MC68328 DRAGONBALL PROCESSOR USER’S MANUAL 4-11

LCD Controller

SYSCLK

ADDRESS

XX X X I

1

I

1
DATA

OE

CSs

Figure 4-7. One Clock per DMA Transfer (0 Wait State)

MOTOROLA MC68328 DRAGONBALL PROCESSOR USER’S MANUAL 4-12

LCD Controller

4.7 REGISTER DESCRIPTIONS

4.7.1 System Memory Control Registers

4.7.1.1 SCREEN STARTING ADDRESS REGISTER (SSA).

31 % 29 28 27 2% 25 24 23 2 2 0 19 18 1716
[5831 | SSA30 | SSA29 | SSA28 | SSA27 | SSA26 | SSA25 | SSA4 [SSA23 | SSA22 | SSA21 | SSA20 | SSAT9 | SSA18 [SSAI7 | SSATG |

5 14 13 12 1 10 9 8 7 6 5 4 3 2 1 0
[sA15 | ssAt4 [sSA13 | SSA12 [SSA11 [SSA10 | SSA9 | SSA8 | SSA7 [SSAG | SSA5 [SSA4 | SSA3 [SsA2 | Ssal | o |

Address: $(FF)FFFA00 Reset Value: $00000000

Figure 4-8. Screen Starting Address Register

SSA31-SSA1 Screen-Starting Address Register

32-bit screen-starting address of the LCD panel (see Figure 4-8). The LCDC fetches pixel
data from system memory at this address.

4.7.1.2 VIRTUAL PAGE WIDTH REGISTER (VPW).

7 6 5 4 3 2 1 0
[ves [vp7 [vee [vps [vpa [vP3 [vP2 [VP1 |

Address: $(FF)FFFA05 Reset Value: $FF

Figure 4-9. Virtual Page Width Register

VP8-VPOM Virtual Page Width Register

This register (see Figure 4-9) specifies the virtual page width of the LCD panel in terms of
byte count. VPO defaults to zero because of the 16-bit transfers.

VPW = virtual page width in pixels divided by ¢ where c is 16 for black-and-white display
and 8 for gray level.

4.7.2 Screen Format Registers

4.7.2.1 SCREEN WIDTH REGISTER (XMAX).

15 14 13 12 i 10 9 8 7 6 5 4 3 2 1 0
[UNUSED [xmo T xms [xm7 [xm6 | Xms [xM4 | Xm3 [xmM2 [Xmi | xmo |

Address: $(FF)FFFA08 Reset Value: $03FF

Figure 4-10. Screen Width Register XMAX

MOTOROLA MC68328 DRAGONBALL PROCESSOR USER’S MANUAL 4-13

LCD Controller

XM9-XMO

Pixels on a line are numbered 0 to XMAX for a screen width of XMAX +1 pixels. XMAX+1
must be a multiple of 16 (see Figure 4-10).

4.7.2.2 SCREEN HEIGHT REGISTER (YMAX).

15 14 13 12 1 10 9 8 7 6 5 4 3 2 1 0
[UNUSED [vmo [vms | vm7 [vve [YMs [vMa [YM3 [ym2 | Ymi [vmo |

Address: $(FF)FFFAOA Reset Value: $01FF

Figure 4-11. Screen Height Register YMAX

YM8-YMO

This register (Figure 4-11) specifies the LCD panel height in term of pixels or lines. The
lines are numbered from 0 to YMAX for a total of YMAX + 1 lines, which is equal to the
screen height in pixel count.

4.7.3 Cursor Control Registers

4.7.3.1 CURSOR X POSITION REGISTER (CXP).

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0
[cct T cco | UNUSED [cxps | cxPs [CXP7 | CXP6 | CXP5 | CXP4 | GXP3 | CXP2 | CXPT | CXPO |

Address: $(FF)FFFA18 Reset Value: $0000

Figure 4-12. Cursor X Position Register

CC1-CCo

Cursor control bits

00= Transparent, cursor is disabled

01= Full density (black) cursor
10= Reversed video
11= Do not use

CXP9-CXPO

Cursor’s horizontal starting position X in pixel count (from 0 to XMAX).

4.7.3.2 CURSOR Y POSITION REGISTER (CYP).

15 o131 1 10 9 8 7 6 5 4 3 2 1 0
[UNUSED [[cvps | CYP7 | CYP6 | CYP5 [CYP4 [CYP3 [CYP2 [CYPT [CYPO |

Address: $(FF)FFFATA Reset Value: $0000

Figure 4-13. Cursor Y Position Register

CYP8-CYPO

Cursor’s vertical starting position Y in pixel count (from 0 to YMAX).

4-14 MC68328 DRAGONBALL PROCESSOR USER’S MANUAL MOTOROLA

LCD Controller

4.7.3.3 CURSOR WIDTH & HEIGHT REGISTER (CWCH).

15 14 13 12 il 10 9 8 7 6 5 4 3 2 1 0
[UNUSED [owa T ows T cwz [cwi [owo | UNUSED [cHa | cHa | cHe | CHI | cHo |

Address: $(FF)FFFA1C Reset Value: $0101

Figure 4-14. Cursor Width & Height Register

CW4-CWo

Cursor width. This 5-bit group specifies the width of the hardware cursor in pixel count
(from 1 to 31).

CH4-CHoO

Cursor height. This 5-bit group specifies the height of the hardware cursor in pixel count
(from 1 to 31).

NOTE

The cursor is disabled if either CW or CH are set to zero.

4.7.3.4 BLINK CONTROL REGISTER (BLKC).

7 6 5 4 3 2 1 0
[BKEN [BD6 [BD5 [BD4 [BD3 [BD2 | BD! | BDO |

Address: $(FF)FFFA1F Reset Value: $7F

Figure 4-15. Blink Control Register

BKEN

Blink-enable cursor will remain on instead of blinking if this bit is cleared. Defaults to zero.

1 = Blink enable

0 = Blink disable

BD6-BDO

Blink divisor. The cursor will toggle once per specified number of internal frame pulses

plus one. The half-period may be as long as 2 seconds.

4.7.4 LCD Panel Interface Registers

4.7.4.1 PANEL INTERFACE CONFIGURATION REGISTER (PICF).

7 6 5 4 3 2 1 0
[UNUSED [PBSizi [PBSIZO] GS |

Address: $(FF)FFFA20 Reset Value: $00

Figure 4-16. Panel Interface Configuration Register

PBSIZ1-PBSIZ0 Panel Bus Width

LCD panel bus size.

00 = 1-bit
01 = 2-bit
10 = 4-bit
11 = unused

MOTOROLA MC68328 DRAGONBALL PROCESSOR USER’S MANUAL 4-15

LCD Controller

GS Gray Scale

Gray scale mode bit. This bit, if set, enables 4-gray level (2 bits per pixel) mode. Its default
value is 0, which selects binary pixel (no gray scale) operation.

1 = Gray scale enable
2 = No gray scale

4.7.4.2 POLARITY CONFIGURATION REGISTER (POLCF).

7 6 5 4 3 2 1 0
[UNUSED [LcKPOL]FLMPOL] LPPOL [PIXPOL |

Address: $(FF)FFFA21 Reset Value: $00

Figure 4-17. Polarity Configuration Register

LCKPOL LCD Shift Clock Polarity

This bit controls the polarity of the LCD shift-clock active edge.

0 = Active negative edge of LCLK
1 = Active positive edge of LCLK

FLMPOL

First-line marker polarity

0 = Active High

1 = Active Low

LPPOL

Line-pulse polarity

0 = Active-high

1 = Active-low

PIXPOL

Pixel polarity

0 = Active-high

1 = Active-low

4-16 MC68328 DRAGONBALL PROCESSOR USER’S MANUAL MOTOROLA

LCD Controller

4.7.4.3 LACD (M) RATE CONTROL REGISTER (ACDRC).

7 6 5 4 3 2 1 0
UNUSED [Acps | AcD2 [AcD1 [AGDO |

Address: $(FF)FFFA23 Reset Value: $00

Figure 4-18. LACD Rate Control Register

ACD3-ACDO Alternate Crystal Direction Control

ACD toggle-rate control code. The ACD signal will toggle once every 1 to 16 FLM cycles
based on the value specified in ACDRC register. The actual number of FLM cycles is the
value programmed plus one. Shorter cycles tend to give better results.

4.7.5 Line Buffer Control Registers

4.7.5.1 PIXEL CLOCK DIVIDER REGISTER (PXCD).

7 6 5 4 3 2 1 0
[unusep [pops [PoD4 | PCD3 [PCD2 [PGDT [PCDO |

Address: $(FF)FFFA25 Reset Value: $00

Figure 4-19. Pixel Clock Divider Register

PCD5-PCDO Pixel Clock Divider

The PIX clock from the PLL is divided by N (PCD5-0 plus one) to yield the actual pixel

clock. Values of 1-63 will yield N=2 to 64. If set to 0 (N=1), the PIX clock will be used di-
rectly, bypassing the divider circuit. Input source is selected by PCDS in CKCON register.

4.7.5.2 CLOCKING CONTROL REGISTER (CKCON).

7 6 5 4 3 2 1 0
[LCDONT DMAT6 [Ws1 [WSO [UNUSED [DWIDTH[PCDS |

Address: $(FF)FFFA27 Reset Value: $00

Figure 4-20. Clocking Control Register

LCDCON

This bit controls the LCDC block.

0 = Disable LCDC

1 = Enable LCDC
NOTE

The internal LCDC logic will be switched off in step with the FLM
pulse.

DMA16

This bit controls the length of the DMA burst.

0 = 8 words burst length
1 =16 words burst length

MOTOROLA MC68328 DRAGONBALL PROCESSOR USER’S MANUAL 4-17

LCD Controller

WS1-WS0 DMA Bursting Clock Control

Number of clock cycles per DMA word access

00 = Single clock-cycle transfer
01 = Two clock-cycle transfer
10 = Three clock-cycle transfer
11 = Four clock-cycle transfer

DWIDTH

Displays memory-data width indicating the size of the external bus interface.

0 = 16-bits memory

1 = 8-bits memory

PCDS Pixel Clock Divider Source Select

0 =The SYS CLK output of PLL is selected
1 = The PIX CLK output of PLL is selected

4.7.5.3 LAST BUFFER ADDRESS REGISTER (LBAR).

7 6 5 4 3 2 1 0
[[UNUSED[LBAR7 | LBARG | LBARS | LBAR4 | LBAR3 | LBAR2 | LBARI |

Address: $(FF)FFFA29 Reset Value: $3E

Figure 4-21. Last Buffer Address Register

LBA7-LBA1

The number of memory words required to fill one line on the display panel. The count is

typically equal to the screen width in pixels divided by 16 for black-and-white display, or
by 8 if in gray scale. For panning, add one more count for black-and-white and two for gray

display.

4.7.5.4 OCTET TERMINAL COUNT REGISTER(OTCR).

7 6 5 4 3 2 1 0
[otcs] otc7 [ocTe [ocTs | otcs [otcs [oTC2 [OTCi |

Address: $(FF)FFFA2B Reset Value: $3F

Figure 4-22. Octet Terminal Count Register

OTC8-0OTCH1

Controls the time interval between two lines; therefore, the frame refresh rate can also be

finely adjusted. The register value must be greater than LBAR by 4 for black-and-white
display and 8 for gray display.

4-18 MC68328 DRAGONBALL PROCESSOR USER’S MANUAL MOTOROLA

LCD Controller

4.7.5.5 PANNING OFFSET REGISTER (POSR).

7 6 5 4 3 2 1 0
[UNUSED [Bos [Posz | Posi [POSO |

Address: $(FF)FFFA2D Reset Value: $00

Figure 4-23. Panning Offset Register

BOS Byte Offset

BOS is used primarily in the non-gray scale mode and in conjunction with POS0-2. (BOS
must be set to zero for gray-scale data).

0 = Start from the first byte when retrieving binary pixel data for display
1 = Active display will start from the second byte instead

NOTE

The cursor reference position must be adjusted separately with
software when this register is changed.

POS2-POS0O Pixel Offset Code

POS specifies which of the 8 pixels in the first or second (GS=0, BOS=1 only) octet re-
trieved from the line buffer is the first to be displayed on the screen. (e.g. 000 implies that
pixel 7, the first shifted out, will be the first to be displayed on every horizontal line in the
current frame).

4.7.6 Gray-Scale Control Registers

4.7.6.1 FRAME-RATE MODULATION CONTROL REGISTER (FRCM) .

7 6 5 4 3 2 1 0
[XMOD3-XMODO [YMOD3-YMODO |

Address: $(FF)FFFA31 Reset Value: $B9

Figure 4-24. Frame-Rate Modulation Control Register

XMOD, YMOD Frame-Rate Modulation Control

These numbers modulate adjacent pixels at different time periods to avoid spatial flicker
or jitter when using FRC. These values must be optimized by manually fine tuning the tar-
get LCD panel. See Section 4.5.5 Gray Palette Mapping for details.

4.7.6.2 GRAY PALETTE MAPPING REGISTER (GPMR).

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0
[o JereJ et [eo] o Jee [Gt] aGo]] o 6] a6 ao] o [Ge][G| Go,]|

Address: $(FF)FFFA32 Reset Value: $0173

Figure 4-25. Gray Palette Mapping Register

GMN

Gray palette code (bit position n=0, 1, 2) output for pixel-input data m (O for pixel data 00,

1=01, 2=10, 3=11). This 3-bit code will then select one of 7 bitstreams of different densi-

ties. See Section 4.5.5 Gray Palette Mapping for details.

MOTOROLA MC68328 DRAGONBALL PROCESSOR USER’S MANUAL 4-19

LCD Controller

4.8 BANDWIDTH CALCULATION AND SAVING

Because LCD screen refresh is a periodic task, the load LCDC puts on the host data bus
becomes an important consideration to the high-performance handheld system designer.

4.8.1 Bus Overhead Considerations

The following example illustrates the issues involved in the estimation of bandwidth
overhead to the data bus.

Consider a typical case scenario:

Screen size: 320 x 240 pixels

Bits per pixel: 2 bits / pixel

Screen refresh rate: 60 Hz

System clock = 16.67 MHz

Host bus size: 16 bit

DMA access cycle: 2 cycles per 16-bit word

The period, T,, that LCDC must update one line of the screen is,

e ol
1™ 60Hz " 240lines EQ 1)

= 69.4us

At the same period, the line buffer must be filled. The duration, Ty, which the DMA cycle
will take up the bus is,

_ 320pixels x 2bitperpixel X 2clock

DMA 16.67TMHz x 16bitbus (EQ2)

= 4.8us

ik

Thus, the percentage of host bus time taken up by the LCDC DMA is Ppya,

DMA = 694 s (EQ3)

4-20 MC68328 DRAGONBALL PROCESSOR USER’S MANUAL MOTOROLA

Handspring Product Guide: Handspring Visor Prism

3. 16-Bit Color Support

Applications using the Palm OS 3.5 color APIs will work on Visor Prism without modification. A color depth

of up to 8 bits per pixel is supported through an index mechanism. A full description of the associated

functions and data structures is documented in the Palm OS 3.5 development guides.

An index is used to reference an 8-bit pixel value to an RGB color that that will be displayed on the LCD. By

contrast, 16-bit color support is implemented using a DirectColor mechanism. A 16-bit RGB value is used

directly, rather than referenced through an index table, to provide pixel color information. Developers that

wish to take advantage of the DirectColor will need to use the new API calls described in this document.

3.1 Determining if 16-bit color APIs are present
The API calls documented here are only necessary for applications that wish to take full advantage of the

expanded range of colors available with a direct color display. Applications written to use the base OS 3.5 color

API calls will continue to work without modification on systems with direct color displays.

To determine if the new API calls for direct color are available, an application should check to see if the

WinSetForeColorRGB () system call is implemented. If this call is available, then all of the direct color API

calls documented here are available:

if (SysGetTrapAddress (sysTrapWinSetForeColorRGB)

!= SysGetTrapAddress (sysTrapSysUnimplemented))

directColorAvailable = true;

else

directColorAvailable = false;

3.2 Foreground, Background, and Text colors
The base Palm OS 3.5 API calls for setting the foreground, background, and text colors are designed to take
an index value as the color parameter. The index value is basically an index into a color lookup table where

each entry in the table specifies the red, green, and blue components of the color. In order to set a certain

drawing color for example, an application first has to lookup the index of that color in the color lookup table

(using WinRGBToIndex) before passing that index value to WinSetForeColor () .

Displays that support 1, 2, 4, or 8 bits per pixel rely on a color lookup table in the display hardware in order to
map pixel values into actual colors and the only colors that can be displayed on the screen at any given time are

those that are found in the display's color lookup table. Thus, the indexed form of the set color API calls

covers the entire range of available colors.

Direct color displays on the other hand, do not rely on a color lookup table because the value stored into each
pixel location specifies the amount of red, green, and blue components directly. For example, a 16-bit direct

color display could have 5 bits of each pixel assigned as the red component, 6 bits as the green component, and

5 bits as the blue component. With this type of display, the application is no longer limited to drawing with a
color that is in a color lookup table.

The base indexed mode calls for setting the foreground, background, and text colors continue to work even

with direct color displays because the system uses a translation table for mapping color index values into actual colors.

This translation table is the color lookup table of the destination bitmap. If the destination bitmap does not

include a color lookup table (the more common case), then the color lookup table of the screen itself is used.

The screen's color lookup table contains the system's default palette of colors, but it can be changed through

the WinPalette () call. When screen is configured as a direct color display, the system gives it an 8-bit color

.8-

Handspring Product Guide: Handspring Visor Prism

table, providing 256 possible indexed colors (the maximum possible for indexed modes). Note that this color

lookup table for the screen is present only for compatibility with the indexed mode color calls and has no

effect on the actual display hardware itself since the display hardware derives the color from the actual red,

green, and blue bits stored in each pixel location of the frame buffer.

Even though the indexed mode calls continue to work with direct color displays, new forms of the calls must

be introduced to make the entire range of direct colors available to an application. The new forms of these

calls take an RGBColorType parameter that specifies the exact amount of red, green, and blue to use and thus

are not limited to colors in the destination bitmap's color lookup table.

The prototypes of these calls are shown below. For each call, newRgbP is the new color to use and the

previous color is returned iz prevRgbP. These new calls are more generic than the older indexed forms and

can be used with both indexed (1, 2, 4, or 8 bit) or direct color displays (the system will automatically look up

the color index value of the closest color for you, if necessary).

WinSetForeColorRGB (const RGBColorType* newRgbP,

RGBColorType* prevRgbP) ;

WinSetBackColorRGB (const RGBColorType* newRgbP,

RGBColorType* prevRgbP) ;

WinSetTextColorRGB (const RGBColorType* newRgbP,

RGBColorType* prevRgbP) ;

Because these new RGB forms of the calls are only available on systems with the direct color enhancements
present, applications should generally stick to using the older indexed form of these calls

(WinSetForeColor (), WinSetBackColor (), WinSetTextColor ()) unless they need finer control

over the choice and dynamic range of colors.

3.3 Pixel Reading and Writing
The base OS 3.5 API call for reading a pixel value, WinGetPixel (), is designed to return a color index value
(IndexedColorType). When this call is performed on a direct color display, it must first get the actual pixel

value (a 16 or 24 bit direct color value) and then look up the closest color from the bitmap's color lookup table

and return the index of the closest color from that table. If the bitmap does not include a color table (the
common case), then the 256 entry color table for the screen itself is referenced. This mode of operation

ensures compatibility for applications that will in turn take the return value from WinGetPixel () and use it

as an indexed color to WinSetForeColor (), WinSetBackColor (), etc.

If the intent of the application is to copy pixels exactly from one bitmap to another, the application will

experience a loss of color accuracy on a direct color display because of the closest-match color table lookup

operation that WinGetPixel () performs.

To avoid this potential loss of color accuracy with direct color displays, applications can instead use the new

WinGetPixelRGB () call. This call returns the pixel as an RGBColorType with a full 8 bits each of red,

green, and blue ensuring no loss of color resolution. This new call is more generic than the base

WinGetPixel () call, and can be used with both indexed (1, 2, 4, or 8 bit) or direct color displays (the

system will automatically look up the RGB components of indexed color pixels as necessary). The prototype of

this function is:

WinGetPixelRGB (Coord x, Coord y, RGBColorType* rgbP);

The pixel setting API calls (WinPaintPixel (), WinDrawPixel (), etc.)all rely on using the current

foreground and background colors and don't require new forms for direct color displays. An application can

simply pass in the return RGBColorType from WinGetPixelRGB () to WinSetForeColorRGB () and

then call WinDrawPixel () in order to copy a direct color pixel.

Handspring Product Guide: Handspring Visor Prism

3.4 Direct Color Bitmaps
The new Window and Blitter managers now support 16-bits per pixel direct color bitmaps, as well as the

previously supported 1-, 2-, 4-, and 8-bit indexed color bitmaps. The format and version of the BitmapType

structure is still 2, but a new directColor flagis defined for the flags field. This bit, when set, indicates that

the pixels in the bitmap are direct color pixels. In addition to this flag, a direct color bitmap must also include

the following four fields. If the bitmap also includes a color lookup table, then these fields follow the color

lookup table; otherwise they immediately follow the bitmap structure itself.

typedef struct BitmapDirectInfoType

{

UInts redBits;

UInts greenBits;

UlInts blueBits;

UInts reserved; // <- must be zero

RGBColorType transparentColor;

}
BitmapDirectInfoType;

The redBits, greenBits, and blueBits fields indicate the number of bits in each pixel for each color

component. The current implementation only supports 16-bits per pixel bitmaps with 5 bits of red, 6 bits of

green, and 5 bits of blue. This type of 16-bit direct color pixel is laid out like this:

RRRR RGGG GGGB BBEBRB

MSB LSB

The transparentColor field contains the red, green, and blue components of the transparent color of the

bitmap. For direct color bitmaps, this field is used instead of the t ransparent Index field to designate the

transparent color value of the bitmap, since the transparentIndex field is only 8 bits wide and can only

represent an indexed color. The transparentColor field, like the t ransparentIndex field, is ignored

unless the hasTransparency bit is set in the bitmap's flags field.

It is important to note that as long as the new version 3 Window manager is present, a 16-bit direct color
bitmap can always be rendered, regardless of the actual screen depth. The color APIs will automatically

perform the necessary bit depth conversion to render the bitmap into whatever the depth of the destination.

Bitmap resources can be built to contain multiple depth images in the same bitmap resource - up to one per

each possible depth. A potential incompatibility could arise if an application includes only a direct color

version of a bitmap, though. Trying to draw a direct color bitmap with an older version of the Blitter manager
will cause the system to crash. Consequently, applications need to either check that version 3 of the Window

manager is present before drawing a direct color bitmap, or they must always include a 1, 2, 4, or 8 bit per

pixel image of the bitmap in the bitmap resource along with the direct color version.

3.5 Special Drawing Modes
The special drawing modes of winErase, winMask, winInvert, and winOverlay introduce a

complication when it comes to direct color models. These drawing modes were originally conceived of for use

with monochrome bitmaps in which black is designated by 1 bits and white is designated by 0 bits. With these

"color" assignments, these various modes can be described as:

e WinErase becomes an AND operation (black pixels in the source leave the destination alone,

whereas white pixels in the source make the destination white).

-10-

Handspring Product Guide: Handspring Visor Prism

e WinMask becomes an ANDNOT operation (black pixels in the source make the destination white,

whereas white pixels leave the destination alone).

e WinInvert becomesan XOR operation (black pixels in the source invert the destination, whereas

white pixels leave the destination alone).

e WinOverlay becomes an OR operation (black pixels in the source make the destination black,

whereas white pixels in the source leave the destination alone).

In a direct color bitmap, black is designated by all 0's and white is designated by all 1's. Because of this, if all

the drawing modes were implemented as logical operations in the same way they were for indexed color

modes, the desired effect would not be achieved.

The assumption made by the direct color APIs is that the desired effect is more important to the caller than

the actual logical operation that is performed. Thus, the various drawing modes, when drawing to a direct

color bitmap, become:

e WinErase becomes an OR operation (black pixels in the source leave the destination alone, whereas

white pixels in the source make the destination white).

e WinMask becomes an ORNOT operation (black pixels in the source make the destination white,

whereas white pixels leave the destination alone).

e WinInvert becomesan XORNOT operation (black pixels in the source invert the destination,

whereas white pixels leave the destination alone).

e WinOverlay becomesan AND operation (black pixels in the source make the destination black,

whereas white pixels in the source leave the destination alone).

As long as the source and destination bitmaps contain only black and white colors, the new interpretations of
the drawing modes in direct color modes will produce the same effects as they would with an indexed color

mode. With non-black-and-white pixels, however, an application may get unexpected results from these
drawing modes if they assume that the color APIs will perform the same logical operation in direct color mode

as they do in indexed color mode.

SECTION 12
LCD CONTROLLER

The liquid crystal display (LCD) controller provides display data for external LCD drivers or

for an LCD panel. The LCD controller fetches display data directly from system memory
through periodic DMA transfer cycles. It uses very little bus bandwidth, which gives the core
sufficient processing time. The following list contains the features of the LCD controller.

- Shares system and display memory, but no dedicated video memory is required

- Standard panel interface for common LCD drivers

» Supports single (non-split) screen monochrome/color STN LCD panels

- Fast fly-by type, 16-bit wide burst DMA screen refresh transfers from system memory

» Maximum display size is 640x512 pixels for b/w and 320x240 for gray display

» Panel interface of 4-, 2-, and 1-bit wide LCD data bus

- Four or sixteen simultaneous gray-scale levels from a palette of 16

+ Hardware blinking cursor that is programmable at a maximum 31x31 pixels

+ Hardware panning (soft horizontal scrolling)

- 8-bit pulse-width modulator for software contrast control

The LCD controller consists of MPU interface registers, control logic, a screen DMA
controller, line buffer, cursor logic, frame rate control, and an LCD panel interface.
Figure 12-1 illustrates how these blocks are organized in the LCD controller.

MOTOROLA MC68EZ328 USER’S MANUAL 12-1

LCD Controller N

DMACLK ‘

LBDIasE PIXEL CLOCK |
MPU |

INTERFACE I
REGISTERS LCD CONTROLLER |

¥ I LCD DRIVER
LCD

NTERFACE [P
G3EC000 CONTROL e

0w CORE Loalc A =
o

> eRavE | =
* > RATE |

CONTROL
|

SYSTEM SCREEN [© A i
INTEGRATION iy

MODULE CURSOR | |
LOGIC I

CSxx +¢ OE v A |

LINE BUFFER | LD
SYSTEM | =S
MEMORY PN 3> VOLTAGE

: CONTROL

Figure 12-1. LCD Controller Block Diagram

12.1 OPERATION

The MPU interface registers enable the different features of the LCD controller. They are
connected to the 68K bus. The control logic provides the internal control and counting
signals for other blocks. The DMA generates a bus request (BR) signal to the core and when
the bus is granted, it performs a few memory bursts to fill up the line buffer. The number of
DMA clock cycles in each burst is the programmable number of clocks per transfer, which
makes it easier to support a system with memory that has different speed grades.

The line buffer collects display data from system memory during DMA cycles and outputs it
to the cursor logic block. The input is synchronized with the fast DMA clock, while the output

is synchronized to the relatively slow LCD pixel clock. The cursor control logic, when

enabled, is used to generate a block-shaped cursor on the display screen. You can change
the height and width of the cursor, as long as you use a number between 1 and 31. The
cursor can be completely black or reversed video and the blinking rate is adjustable when
the BKEN bit in the LCD blink control (LBLKC) register is set.

Frame rate control is mainly used for gray-scale displays and can generate a maximum of

sixteen gray-scale levels out of 16 density levels, as shown in Table 12-1. The density level

corresponds to the number of times that a pixel is turned on when the display is refreshing.

Since crystal formulations and driving voltage may vary, the quality of the gray-scale can be

fine-tuned by programming the LCD gray palette mapping register (LGPMR).

12-2 MC68EZ328 USER’S MANUAL MOTOROLA

LCD Controller

The LCD interface logic is used to pack the display data into the correct size and output it to
the LCD panel’s data bus. The polarity of the LFLM, LP, and LCLK signals and pixel data
can all be programmed to suit different LCD panel requirements.

12.1.1 Connecting the LCD Controller to an LCD Panel

The following signals are used to connect the LCD controller to an LCD panel:

+ LD[3:0]. The LCD Data Bus lines transfer pixel data to the LCD panel so that it can be
displayed. Depending on which LCD panel mode is selected, data is arranged
differently on the bus. You can program the output pixel data to be negated. See
Section 12.2.10 LCD Polarity Configuration Register for more information. The LCD

controller is configured to drive single-screen monochrome LCD panels only. The data
bus size for an LCD panel can be configured to 1-, 2-, or 4-bit by programming the LCD
panel bus size (LPBSIZ) register.

« LFLM. The LCD Frame Marker signal indicates the start of a new display frame. LFLM
becomes active after the first line pulse of the frame and remains active until the next

line pulse, at which point it deasserts and remains inactive until the next frame. You can
program LFLM to be an active high or active low signal in software. See Section 12.2.10
LCD Polarity Configuration Register for more information.

« LLP. The LCD Line Pulse signal is used to latch a line of shifted data onto an LCD
panel. It becomes active when a line of pixel data is clocked into the LCD panel and
stays asserted for an 8-pixel clock period. You can program LLP to be an active high or
active low signal in software. See Section 12.2.10 LCD Polarity Configuration Register
for more information.

- LCLK. The LCD Shift Clock signal is the clock output to which the output data to the
LCD panel is synchronized. You can program LCLK to be an active high or active low

signal in software. See Section 12.2.10 LCD Polarity Configuration Register for more
information.

- LACD. The LCD Alternate Crystal Direction output signal is toggled to alternate the
crystal polarization on the panel. You can program this signal to toggle for a period of 1
to 16 frames. The LACD signal will toggle after a preprogrammed number of FLM or LP
pulses. The LACD rate control register (LACDRC) can be programmed so that LACD

will toggle once every 1 to 16 frames. The targeted number is equal to the alternation
code’s 4-bit value plus one. The default value for LACDRC is zero, which enables the

LACD signal to toggle on every frame. The LACD signal is synchronized with the trailing
(falling) edge of the LLP signal, which is enclosed by the LFLM signal. See Section
12.2.11 LACD Rate Control Register for more information.

12.1.1.1 PANEL INTERFACE TIMING. The LCD controller continuously pumps the pixel
data into the LCD panel via the LCD data bus. The bus is timed by the LCLK, LLP and LFLM

signals. The LCLK signal clocks the pixel data into the display drivers’ internal shift register.
The LLP signal latches the shifted pixel data into a wide latch at the end of a line while the
LFLM signal marks the first line of the displayed page.

The LCD controller is designed to support most monochrome LCD panels. Figure 12-2

illustrates the LCD interface timing for 1-, 2-, and 4-bit LCD data bus operation. The LLP

MOTOROLA MC68EZ328 USER’S MANUAL 12-3

LCD Controller

signal signifies the end of the current line of serial data. The LLP signal enclosed by the

LFLM signal marks the end of the first line of the current frame.

Some LCD panels can use an active low LFLM, LLP, or LCLK signal and reversed pixel

data. To change the polarity of these signals, set the FLMPOL, LPPOL, LCKPOL and

PIXPOL bits in the LCD polarity configuration (LPOLCF) register to 1. In addition to the
interface timing pins, the LACD pin will toggle after a preprogrammed number of LFLM

pulses. The purpose of this pin is to prevent the crystal in the LCD panel from degrading.

LFLM 1 1
LLP _flLlNE 1 flUNE2 I-‘L|NE3 I-|L|NE4 --------------- LINEN ~LINE 1

e, e
W T

1 2 3 20 21 m-1 m

103 —XXXX)X oo X ol X wsor X222 oo X oo L~ Xm0 Ximrao XXXX

LD2 XXX XX 110 ol X T X imro X m3. XXXX

LD1 XXX izt X e X moor X -~ T Xm0 Xm0 XXXXC

LDO 13.0] 1700 X 111,01 Xim-5.0 X[m-1,01

LD1

LDO

*Lmao Xm0 XXXX

K [m-3,0] x [m-1,0] X g X X

D0 XXX oo Y o Y o %~ wor X oo Yo - - Xm0 Xim-top XXX

Figure 12-2. LCD Interface Timing for 4-, 2-, and 1-Bit Data Widths

12.1.2 Controlling the Display

The LCD controller is designed to drive single-screen monochrome STN LCD panels with

up to 640 x 512 pixels in black-and-white display and 320 x 240 in gray level display. Screen

size larger than 320 x 240 for gray level display may cause flickering due to slow refresh

rate. The best efficiency is achieved when the screen width is a multiple of the DMA

controller’s 16-bit bus width.

12-4 MC68EZ328 USER’S MANUAL MOTOROLA

LCD Controller

12.1.2.1 FORMAT OF THE LCD SCREEN. The screen width and height of the LCD panel
are software programmable. Figure 12-3 illustrates the relationship between the portion of
a large graphics file displayed on the screen versus the actual page. The units in the figure
are measured in pixel counts.

~¢—— VIRTUALPAGEWIDTH —— >

SCREENSTARTING ADDRESS

~¢—— SCREENWIDTH ——»»

-
 ! e
l

CURSOR X POSITION
- VI

RT
UA
L

PA
GE

HE

IG
HT

CU
RS
OR

Y
PO

SI
TI

ON

te
g—

CU
RS
OR

HE
IG
HT

U
—
L

CURSOR WIDTH —2>|

~
—
—
—

SC
RE

EN

HE
IG
HT

Figure 12-3. LCD Screen Format

The LCD screen width (LXMAX) and LCD screen height (LYMAX) registers are where you

specify the size of the LCD panel. The LCD controller will start scanning the display memory
at the location pointed to by the LCD screen starting address (LSSA) register. Therefore, the
shaded area in Figure 12-3 will be displayed on the LCD panel.

The maximum page width and page height are specified by the LCD virtual page width
(LVPW) and LCD virtual page height parameters. By changing the LSSA register, a
screen-sized window can be vertically or horizontally scrolled (panned) anywhere inside the
virtual page boundaries. However, it is up to your software to position the starting address
so that the scanning logic’s system memory pointer does not stretch beyond the virtual page

width or height. Otherwise, strange objects will appear on the screen. The LVPH parameter
shows the bottom of the page, but it is not used by the LCD controller.

12.1.2.2 FORMAT OF THE CURSOR. To define the position of the hardware cursor, the
LCD controller maintains a vertical line counter (YCNT) to keep track of the current pixel’s
vertical position. YCNT, in conjunction with XCNT (the horizontal pixel counter), specifies
the screen position of the pixel data being processed. When the pixel falls within a window
specified by the cursor’s reference position, cursor width, and cursor height, the original
pixel bits can be shown with different properties. These properties can be transparent
(cursor is disabled), full (black cursor), reversed video, full (white cursor), or blinking. You
can make the hardware cursor blink by setting the BKEN bit in the LBLKC register to 1,

which alternates the original signal and cursor periodically. You can control the speed at
which the cursor blinks by selecting the BDx bit in the LBLKC register. The half-period may
be as long as 2 seconds.

MOTOROLA MC68EZ328 USER’S MANUAL 12-5

LCD Controller

12.1.2.3 MAPPING THE DISPLAY DATA. The LCD controller supports 1 or 2 bits per pixel
graphics mode. In the 1-bit mode, each bit in the display memory corresponds to a pixel in
the LCD panel. The corresponding pixel on the screen is either fully on or fully off.
Meanwhile, in 2-bit mode, each pixel is being represented by two bits of display memory. To
map the data to the LCD panel, you have to program the appropriate bit in the corresponding
address of the display memory. Figure 12-4 illustrates how the system memory data in both
modes are mapped.

LCD DRIVERS |

©00) [| (10) || 20) (X-1,0)

w
0
w
=
o0
o

Q

<

Y- | y-n| @y (X-1,Y-1

1-BIT PER PIXEL MODE

7 6 5, 4 3 2 1 0

DISPLAY 0,0) (1,0) (2,0) (3,0) (4,0 (5.0) 6.0) 7.0)

MAPPING

(X-8,Y-1) (X-7,Y-1) (X-6,Y-1) (X-5.Y-1) (X-4.Y-1) (X-3,Y-1) (X-2,Y-1) (X-1,Y-1)

2-BI1S PEH FIXEL MUDE

7 6 5 4 3 2 1 0

(0.0) (10) 2.0) 3.0)

DISPLAY (X-4,Y-1) (X-3,Y-1) (X-2,Y-1) (X-1,Y-1)

MAPPING | | | l

Figure 12-4. Mapping Memory Data on the Screen

12.1.2.4 GENERATING GRAY-SCALE TONES. In 2-bit per pixel mode, a proprietary
frame rate control circuitry inside the LCD controller generates intermediate gray-scale
tones on the LCD panel by adjusting the density of ones and zeroes that appear over the
frames. The LCD controller can generate sixteen simultaneous gray-scale levels out of 16

12-6 MC68EZ328 USER’S MANUAL MOTOROLA

LCD Controller

available palettes. The two levels between black and white can be selected from
Table 12-1. Use the LGPMR registers to program the gray-scale level.

Table 12-1. Gray-Scale Palette Options

GRAY-SCALE CODE DENSITY

0000 0

0001 1/8

0010 3/16

0011 1/4

0100 5/16

0101 3/8

0110 7116

0111 12

1000 9116

1001 5/8

1010 1116

1011 3/4

1100 13/16

1101 718

1110 15/16

111 1

NOTE: 0=White and 1=Black.

Since crystal formulations and driving voltages vary, the visual gray-scale effect may or may
not be linearly related to the frame rate. For certain types of graphics, a logarithmic scale
like 0, '/,, /,, and 1, might be more visually pleasing than a linearly spaced scale like 0, 5/4¢,
"/,6 and 1. This flexible mapping scheme allows you to optimize the visual effect for the
specific panel or application during a sixteen gray-scale level display mode.

12.1.2.5 CONTROLLING FRAME RATE MODULATION. Sometimes blinking or flickering
will occur if all of the LCD pixel cells are driven at the same time. To minimize flickering, you
can program two 4-bit numbers, specifically the XMOD and YMOD bits in the LCD frame
rate modulation control (LFRCM) register. As a general rule, you should select odd numbers
and the two values should differ by at least 2. The optimal offset values could vary among
LCD panel models (even those by the same manufacturer) because of different inter-pixel

cross-talk characteristics. However, the default value of the LFRCM register should work for
most of the LCD panels on the market.

MOTOROLA MC68EZ328 USER’S MANUAL 12-7

LCD Controller

12.1.3 Using Low-Power Mode

Some panels may have a PANEL_OFF signal, which is used to turn off the panel for

low-power mode. In an MC68EZ328 system, this signal is not supported, but can be easily

implemented using a parallel I/O pin. You can program your software to achieve

PANEL_OFF by using parallel I/0 in the following sequence:

1. Drive the LCD bias voltage to +15V or -15V.

2. Setthe LCDON bit to 0 in the LCD clocking control (LCKCON) register, which turns off

the LCD controller.

To turn the LCD controller back on, follow these steps:

1. Set the LCDON bit to 1 in the LCKCON register, which turns on the LCD controller.

2. Pause for 1 or 2ms.

3. Drive the LCD bias voltage to +15V or -15V.

When you set the LCDON bit in the CLKCON register to 1, the LCD controller will enter

low-power mode by stopping its own pixel clock prior to the next line buffer fill DMA. Further

screen DMA and display refresh operations will then be halted in this mode. When the LCD

controller is turned back on, DMA and screen refresh activities will resume synchronously.

12.1.4 Using the DMA Controller

This LCD DMA controller is a fly-by type 16-bit wide fast data transfer machine. Since the

LCD screen has to be continuously refreshed at a rate of 50-70Hz, the pixel bits in the

memory will be read and transferred to the corresponding pixels on the screen. To minimize

bus obstruction, a burst type and fly-by transfer is required. Each cycle is evenly distributed

across the time frame. Every time the internal line buffer needs data, it asserts the BR signal

to request the bus from the core. Once the core grants the bus (BG is asserted), the DMA

controller gets control of the bus signal and issues a number of words read from memory.

The read data is then internally passed to the internal pixel buffer. During the LCD access

cycles, output enable and chip-select signals for the corresponding system memory chip are

asserted by the chip-select logic inside the system integration module. You can minimize

bus bandwidth obstruction by using zero LCD access wait-states (1 clock per access).

12.1.4.1 BUS BANDWIDTH CALCULATION EXAMPLE. Since LCD screen refresh

occurs periodically, the load that the LCD controller puts on the host data bus becomes an

important consideration to the high performance handheld system designer. There are

many issues involved in estimating bandwidth overhead to the data bus.

Consider a typical scenario:

Screen size: 320 x 240 pixels

Bits per pixel: 2-bits per pixel

Screen refresh rate: 60Hz

System clock: 16.58MHz

12-8 MC68EZ328 USER’S MANUAL MOTOROLA

LCD Controller

Host bus size: 16-bit

DMA access cycle: 2 cycles per 16-bit word

The following T, period is used by the LCD controller to update one line of the screen:

e L
'™ 60Hz " 240 lines

= 69.4us

During the same period, the line buffer must be filled. The following Tpua duration is how

long the DMA cycle will hold up the bus:

T _ 320 pixels x 2 bits per pixel x 2 clocks

B 16.67MHz x 16-bit bus
= 4.8us

Thus, the percentage of host bus time taken up by LCD controller’s DMA is Ppy, as follows:

P _ 48 us

DMA ™ 69 4" us

= 6.92'%

12.2 PROGRAMMING MODEL

12.2.1 LCD Screen Starting Address Register

The LCD screen starting address (LSSA) register is used to inform the LCD panel where to

fetch the data to be displayed.

LSSA

BIT 31 | 30 | 20 | 28 | 27 | 26 | 25 | 24 | 23 | 22 | 21 | 20 | 19 | 18 | 17 | 16

SSA2 | SSA2 | SSA2 | SSA2 | SSA2 | SSA2 | SSA2 | SSA2 | SSA2 | SSAT | SSA1 | SSA1 | SSA1

FIELD RESERVED 8 | 7 | 6 | 5 | 4|3 |21 |09 |8 | 7|5

RESET 0x00000000

ADDR OX(FF)FFFA0D

BIT 45 014 L3812 i e108 0 8 7 6 5 4 3 2 1 0

SSA1 | SSA1 | SSA1 | SSA1 | SSA1 | SSA1
FIELD 5 " p 5] o | SSAY | SSAB | SSAT | SSAG | SSAS | SSA4 | SSAS | SSA2 | SSAT | —

RESET 0x00000000

ADDR OX(FF)FFFA0O

Bit 31-29—Reserved

These bits are reserved and must be set to 0.

MOTOROLA MC68EZ328 USER’S MANUAL 12-9

LCD Controller

SSAx—Screen Starting Address 28—1

This field is the 28-bit screen starting address of the LCD panel. The LCD controller will start

fetching pixel data from system memory at this address. This field must start at a location

that will enable a complete picture to be stored in a 128K memory boundary (A[16:00]). In

other words, A[28:17] has a fixed value for a picture’s image.

12.2.2 LCD Virtual Page Width Register

The LCD virtual page width (LVPW) register contains the width of the displayed image.

LVPW

BIT 7 6 5 4 3 2 1 0

FIELD VP8 VP7 VP6 VP5 VP4 VP3 VP2 VP1

RESET OFF

ADDR OX(FF)FFFAOS

VPx—Virtual Page Width 81

This bit specifies the virtual page width of the LCD panel in terms of word count.
The virtual page width is the virtual width in pixels divided by 16 for a black and white display

and 8 for a four level gray-scale display and divided by 4 for a sixteen-level grayscale

display.

12.2.3 LCD Screen Width Register

The LCD screen width register (LXMAX) is used to define the width of your LCD panel’s
screen. This register must be a multiple of 16.

LXMAX

BIT 1501 140 13 BRI2E | 11 10 9 8 7 6 [55 | 4 3 2 1 0

FIELD = XM9 | XM8 | XM7 | XM6 | XM5 | XM4 -

RESET 0x03F0

ADDR Ox(FF)FFFA08

XMx—Width Maximum 9-4

These bits represent the width of the LCD panel in number of pixels.

12-10 MC68EZ328 USER’S MANUAL MOTOROLA

LCD Controller

12.2.4 LCD Screen Height Register

The LCD screen height register (LYMAX) is used to define the height of your LCD panel’s
screen.

LYMAX

BIT 15 [f 14 P13t 2 11] 10 9 8 7 6 5 4 3 2 1 0

FIELD = YM8 | YM7 | YM6 | YM5 | YM4 | YM3 | YM2 | YM1 | YMO

RESET 0x01FF

ADDR Ox(FF)FFFAOA

YMx—Height Maximum 8-0

These bits represent the height of the LCD panel in number of pixels, which is equal to
YMAX+1.

12.2.5 LCD Cursor X Position Register

The LCD cursor X position (LCXP) register is used to determine the horizontal position of
your cursor on the LCD panel.

LCXP

BIT 150 i 13108 10 9 8 7 6 5 4 3 2 1 0

FIELD | cC1 | CCo - CXP9 | CXP8 | CXP7 | CXP6 | CXP5 | CXP4 | CXP3 | CXP2 | CXP1 | CXPO

RESET 0x0000

ADDR Ox(FF)FFFA18

CCx—Cursor Control 1 and 0

These bits are used to control the format of your cursor.

00 = Transparent, cursor is disabled.

01 = Full (black) cursor.
10 = Reversed video.

11 = Full (white) cursor.

CXPx—Cursor X Position 9-0

These bits represent the cursor’s horizontal starting position X in pixel count (from 0 to
XMAX).

MOTOROLA MC68EZ328 USER’S MANUAL 12-11

LCD Controller

12.2.6 LCD Cursor Y Position Register

The LCD cursor Y position (LCYP) register is used to determine the vertical position of your

cursor on the LCD panel.

LCYP

BIT 15 P 1L 13 120 11 10 9 8 i 6 5 4 3 2 1 0

FIELD - CYP8 | CYP7 | CYP6 | CYPS | CYP4 | CYP3 | CYP2 | CYP1 | CYPO

RESET 0x0000

ADDR Ox(FF)FFFATA

CYPx—Cursor Vertical Y Pixel 8-0

These bits represent the cursor’s vertical starting position Y in pixel count (from 0 to YMAX).

12.2.7 LCD Cursor Width and Height Register

The LCD cursor width and height (LCWCH) register is used to determine the width and
height of your cursor.

LCWCH

BIT 150 14 | 130 12 | 1 10 9 8 7 6 5 4 3 2 1 0

FIELD = CW4 | CW3 | CW2 | W1 | Cwo - CH4 | CH3 | CH2 | CH1 | CHO

RESET 0x0101

ADDR OX(FF)FFFA1C

CWx—Cursor Width 4-0

These bits specify the width of the hardware cursor in pixel count (from 1 to 31).

CHx—Cursor Height 4-0

These bits specify the height of the hardware cursor in pixel count (from 1 to 31).

7 Note: The cursor is disabled if the CWx or CHx bits are set to zero.

12-12 MC68EZ328 USER’S MANUAL MOTOROLA

LCD Controller

12.2.8 LCD Blink Control Register

The LCD blink control register (LBLKC) is used to control how your cursor blinks.

LBLKC

BIT 7 6 5 4 3 2 1 0

FIELD BKEN BD6 BD5 BD4 BD3 BD2 BD1 BDO

RESET Ox7F

ADDR Ox(FF)FFFA1F

BKEN—BIlink Enable

This bit determines if the blink enable cursor will blink or remain steady.

1 = Blink is enabled.

0 = Blink is disabled (default).

BDx—Blink Divisor 6—0

These bits determine if the cursor will toggle once per a specified number of internal frame
pulses plus one. The half-period may be as long as 2 seconds.

12.2.9 LCD Panel Interface Configuration Register

The LCD panel interface configuration (LPICF) register is used to determine the data bus

width of the LCD panel and to determine if it is a black and white or grayscale display.

LPICF

BIT 7 6 5 4 3 2 1 0

FIELD - PBSIZ1 PBSIZ0 GS1 GS0

RESET 0x00

ADDR Ox(FF)FFFA20

PBSIZx—Panel Bus Width 1-0

00 = 1-hit.

01 = 2-bit.

10 = 4-bit.
11 = Unused.

GSx—Gray-Scale Mode Selection 1-0

00 = Black and white mode.
01 = Four level gray-scale mode.
10 = Sixteen level gray-scale mode.
11 = Reserved.

MOTOROLA MC68EZ328 USER’S MANUAL 12-13

LCD Controller

12.2.10 LCD Polarity Configuration Register

The LCD polarity configuration (LPOLCF) register controls the polarity of the interface signall
that goes to the LCD panel.

LPOLCF

BIT 7 6 5 4 3 2 1 0

FIELD - LCKPOL | FLMPOL | LPPOL | PIXPOL

RESET 0%00

ADDR OX(FF)FFFA21

LCKPOL—LCD Shift Clock Polarity

This bit controls the polarity of the active edge of the LCD shift clock.

0 = Active negative edge of LCLK.
1 = Active positive edge of LCLK.

FLMPOL—Frame Marker Polarity

This bit controls the polarity of the frame marker.

0 = Frame marker is active high.
1 = Frame marker is active low.

LPPOL—Line Pulse Polarity

This bit controls the polarity of the line pulse.

0 = Line pulse is active high.
1 = Line pulse is active low.

PIXPOL—Pixel Polarity

This bit controls the polarity of the pixels.

0 = Pixel polarity is active high.
1 = Pixel polarity is active low.

12.2.11 LACD Rate Control Register

The LCD alternate crystal direction rate control (LACDRC) register is used to control the
alternate rates of the liquid crystal direction.

LACDRC

BIT i 6 5 4 3 2 1 0

FIELD ACDSLT = ACD3 ACD2 ACD1 ACDO

RESET 0x00

12-14 MC68EZ328 USER’S MANUAL MOTOROLA

LCD Controller

LACDRC

BIT 7 6 5 4 3 2 1 0

ADDR OX(FF)FFFA23

ACDSLT -Signal Source Select

0 = Select Frame Pulse

1 = Select Line Pulse

ACDx—Alternate Crystal Direction Control 3—0

These bits represent the ACD toggle rate control code. The LACD signal will toggle once
every 1to 16 FLM cycles based on the value specified in this register. The actual number
of FLM cycles is the value programmed plus one. Shorter cycles tend to give better results.

12.2.12 LCD Pixel Clock Divider Register

The LCD pixel clock divider (LPXCD) register is used to program the divider, which
generates the pixel clock.

LPXCD

BIT 7 6 5 4 3 2 1 0

FIELD = PCD5 PCD4 PCD3 PCD2 PCD1 PCDO

RESET 0x00

ADDR OX(FF)FFFA25

PCDx—Pixel Clock Divider 5-0

These bits represent the pixel clock divisor. The LCLK signal from the PLL is divided by N

(PCD5-0 plus one) to yield the actual pixel clock. Values of 1-63 will yield N=2 to 64. If set
to 0 (N=1), the PIX clock will be used directly, thus bypassing the divider circuit. Refer to for
more information.

12.2.13 LCD Clocking Control Register

The LCD clocking control (LCKCON) register is used to enable the LCD controller and
control the LCD memory cycle.

LCKCON

BIT 7 6 5 4 3 2 1 0

FIELD LCDON DWIDTH - DWS3 DWS2 DWS1 DWS0

RESET 0x00

ADDR Ox(FF)FFFA27

MOTOROLA MC68EZ328 USER’S MANUAL 12-15

LCD Controller

LCDON—LCD Control

0 = Disable the LCD controller.

1 = Enable the LCD controller.

DWIDTH—Display Memory Width

This bit sets the bus width of the display memory.

0 = 16-bit bus width.

1 = 8-bit bus width.

DWSx—Display Wait-State 3—-0

These bits represent the static display memory wait-state control. It is the number of clock
cycles per DMA access (for SRAM or ROM only).

0000 = One clock cycle transfer.
0001 = Two clock cycle transfers.

°

°

1111 = Sixteen clock cycle transfers.

12.2.14 LCD Refresh Rate Adjustment Register

The LCD refresh rate adjustment (LRRA) register is used to fine-tune the display refresh rate

by introducing an idle interval between alternate LCD DMA and display cycles.

LRRA

BIT 7 6 5 4 3 2 1 0

FIELD RRA7 RRA6 RRA5 RRA4 RRA3 RRA2 RRA1 RRAO

RESET OxFF

ADDR Ox(FF)FFFA29

RRAx—Refresh Rate 7-0

These bits contain the frame period, which can be calculated as follows:

Frame period = (6+RRA+width) x height x (PCXD+1) x LCLK,

where:

Frame period = Number of nanoseconds for each screen update.

RRAXx = Hexadecimal value stored in the LRRA register.

Width = Screen width in number of pixels.

Height = Screen height in number of pixels.

PCXD = Hexadecimal value stored in the LPXCD register.

LCLK = Period in nanoseconds for LCLK.

12-16 MC68EZ328 USER’S MANUAL MOTOROLA

LCD Controller

12.2.15 LCD Panning Offset Register

The LCD panning offset register (LPOSR) is used to control how many pixels the picture is

shifted to the left.

LPOSR

BIT 7 6 5 4 3 2 1 0

FIELD = POS3 POS2 POS1 POS0O

RESET 0x00

ADDR Ox(FF)FFFA2D

POSx— Pixel Offset Code

These bits specify the number of pixels being shifted to the left of the display panel.

POS [3:0] - Pixel Offset Code for black-and-white display
POS [2:0] - Pixel Offset Code for four level gray-scale dispaly
POS [1:0] - Pixel Offset Code for sixteen level gray-scale display.

- Note: When you modify this register, your software must adjust the cursor’s reference
: position.

/

12.2.16 LCD Frame Rate Control Modulation Register

The LCD frame rate control modulation register (LFRCM) is used to minimize the flickering
on your LCD panel.

LFRCM

BIT 7 6 5 4 3 2 1 0

FIELD XMOD3 XMOD2 XMODH1 XMODO YMOD3 YMOD2 YMOD1 YMODO

RESET 0xB9

ADDR Ox(FF)FFFA31

XMODx—Horizontal Modulation 3—-0

These bits modulate adjacent pixels at different time periods to avoid spatial flicker or jitter

when frame rate control is used. These values must be optimized by manually fine-tuning

the target LCD panel. See Section 12.1.2 Controlling the Display for more information.

MOTOROLA MC68EZ328 USER’S MANUAL 12-17

LCD Controller

YMODx—Vertical Modulation 3—0

These bits modulate adjacent pixels at different time periods to avoid spatial flicker or jitter
when frame rate control is used. These values must be optimized by manually fine-tuning
the target LCD panel. See Section 12.1.2 Controlling the Display for more information.

12.2.17 LCD Gray Palette Mapping Register

For 4-level gray-scale displays, full black and full white are the two predefined display levels.
The other two intermediate gray-scale shading densities can be adjusted here in the LCD
gray palette mapping register (LGPMR).

LGPMR

BIT 7 6 5 4 3 2 1 0

FIELD G23 G22 G21 G20 G13 G12 G11 G10

RESET 0x84

ADDR Ox(FF)FFFA33

G23-G20—Gray-Scale 23—20

These bits represent one of the two gray-scale shading densities.

G13-G10—Gray-Scale 13—-10

These bits represent the other gray-scale shading density.

12.2.18 PWM Contrast Control Register

The pulse-width modulator contrast control register (PWMR) is used to control PWMO
signal, which controls the contrast of the LCD panel.

PWMR

BIT 18 (14 13 20 11 | 100 9 8 7 6 5 4 3 2 1 0

FIELD SCR1 | SCRO C%PE PW7 | PW6 | PW5 | PW4 | PW3 | PW2 | PW1 | PWO

RESET 0x0000

ADDR Ox(FF)FFFA36

SRCx—Source 1-0

These bits select the input clock source for the PWM counter. Therefore, the PWM output
frequency is equal to the frequency of the input clock divided by 256.

00 = Line pulse.

01 = Pixel clock.
10 = LCD clock.

11 = Reserved.

12-18 MC68EZ328 USER’S MANUAL MOTOROLA

LCD Controller

CCPEN—Contrast Control Enable

The bit is used to enable or disable the contrast control function.

0 = Contrast control is off.

1 = Contrast control is on.

PWx—Pulse-Width 7-0

This bit controls the pulse-width of the built-in pulse-width modulator, which controls the

contrast of your LCD screen. See for more information.

12.3 PROGRAMMING EXAMPLE

The following is an example of how to program the related registers so that you can properly
configure an LCD panel with a resolution of 240x160 pixels, four levels of gray-scale, and a
4-bit LCD data interface. The virtual image is 320 pixels wide and panned by three pixels.

LCDINT move.l #$A80000,#$FFFA00 ;display data address starts at $A80000

move.w #240,#$SFFFA08 ;LCD horizontal size is 240

move.w #159,#$FFFAOA ;LCD vertical size is 160

move.b #40,#$FFFA05 ;4 level grey and 320 pixels wide image

move.b #$09,#SFFFA20 ;LCD panel data bus is 4 bits, 4 level grey

move.b #3,#$FFFA25 ;pixel clock rate equal 1/4 of LCDCLK from PLL

move.b #10,#SFFFA29 ;refresh rate adjustment

move.b #$03,#$SFFFA2D ;shift picture by 3 pixels

move.b #$82,#$FFFA27 ;switch on LCDC, 2 wait state for memory cycle

MOTOROLA MC68EZ328 USER’S MANUAL 12-19

Pilot PDA Search: Search

Chris Mauricio wrote:
>

Hey all- still looking for info

So reading the specs on the IIIc, it shows a DragonBall 20 Mhz CPU,

Re: Pilot: IIIc CPU questions repost In:dents Matching:All words

Home Page

From Chris Terwilliger <chris @searat.com> e

To pilot@ultraviolet.org Thread Index

Subject Re: Pilot: ITllc CPU questions repost Date Index

Date Mon, 28 Feb 2000 22:26:34 -0500 Author Index

Date Previous
Date Next

Thread Previous|
Thread Next

I

>

>

>

> understood it was rumoured to use the 33 Mhz CPU.. any comments? Any idea

The IIIc is using the 68EZ328 which is spec’d at 20Mhz. This is the

same cpu/speed as the Vx. The 33Mhz part is the new 68VZ328 which no

current Palm device is using. Why is that you ask? Doesn’t the VZ part

support color? Why yes it does, but it only supports lower quality STN

type color displays and only 16 colors. So Palm teamed the older EZ

part with the Epson SED1375 Embedded Memory LCD Controller. The SED1375

is a really cool display driver with a lot of features and is designed

to be directly driven by a dragonball. It supports active matrix TFT

panels and up to 256 colors. It has 80K of embedded RAM so you don’t

have to use system memory for your display buffer. It also does display

rotation and virtual display (panning & scrolling) on chip. Just what

Palm needed for the IIIc. Of course later Palm models *could* swap the

EZ part for the VZ part at 33Mhz and get a fairly dramatic speedup and

still use the SED1375 for the display.

// Chris Terwilliger

// chris@searat.com
// zoom@palm.net

The Pilot list/archive/unsubscribe page is http://www.ultraviolet.org

® References:

O Pilot: IIIc CPU questions repost
B From: "Chris Mauricio" <cmauricio@arrk.com>

Prev by Date: Re: Pilot: Palm Store -- One Word: Cluster***

Next by Date: Re: Pilot: Outlook Express 5 and Plam Mail

Prev by thread: Pilot: Illec CPU questions repost

Next by thread: Pilot: Profane Language

Index(es):

O Date

Page 54 Epson Research and Development
Vancouver Design Center

8 Registers

8.1 Register Mapping

8.2 Register Descriptions

The SED1375 registers are located in the upper 32 bytes of the 128K byte SED1375 address

range. The registers are accessible when CS# = 0 and AB[16:0] are in the range 1FFEOh

through 1FFFFh. 54% o= OX / Foo 0ooo

(T

Unless specified otherwise, all register bits are reset to 0 during power up.

All bits marked n/a should be programmed 0.

REG[00h] Revision Code Register

Address = 1FFEOh Read Only.

Product Code | Product Code | Product Code | Product Code | Product Code | Product Code Revision Revision

Bit 5 Bit 4 Bit 3 Bit 2 Bit 1 Bit 0 Code Bit 1 Code Bit 0

bits 7-2 Product Code
This is a read-only register that indicates the product code of the chip. The product code is

001001.

bits 1-0 Revision Code
This is a read-only register that indicates the revision code of the chip. The revision code is

00.

Address = 1FFE1h

REG[01h] Mode Register 0
Read/Write.

TFT/STN Dual/Single | Color/Mono
FPLine FPFrame Mask Data Width Data Width
Polarity Polarity FPSHIFT Bit 1 Bit 0

bit 7

bit 6

bit 5

TFT/STN
When this bit = 0, STN (passive) panel mode is selected. When this bit = 1, TFT/D-TFD

panel mode is selected. If TFT/D-TFD panel mode is selected, Dual/Single (REG[01h] bit

6) and Color/Mono (REG[01h] bit5) are ignored. See Table 8-1: “Panel Data Format” for a

comprehensive description of panel selection.

Dual/Single
When this bit = 0, Single LCD panel drive is selected. When this bit = 1, Dual LCD panel

drive is selected. See Table 8-1: “Panel Data Format™ for a comprehensive description of

panel selection.

Color/Mono
When this bit = 0, Monochrome LCD panel drive is selected. When this bit = 1, Color

LCD panel drive is selected. See Table 8-1: “Panel Data Format” for a comprehensive

description of panel selection.

SED1375
X27A-A-001-07

Hardware Functional Specification
Issue Date: 01/01/29

Epson Research and Development Page 55

Vancouver Design Center

bit 4 FPLINE Polarity

This bit controls the polarity of FPLINE in TFT/D-TFD mode (no effect in passive panel

mode). When this bit = 0, FPLINE is active low. When this bit = I, FPLINE is active high.

bit 3 FPFRAME Polarity
This bit controls the polarity of FPFRAME in TFT/D-TFD mode (no effect in passive

panel mode). When this bit = 0, FPFRAME is active low. When this bit = I, FPFRAME is

active high.

bit 2 Mask FPSHIFT
FPSHIFT is masked during non-display periods if either of the following two criteria is

met:

1. Color passive panel is selected (REG[01h] bit 5 = 1)

2. This bit (REG[01h] bit2) =1

bits 1-0 Data Width Bits [1:0]

These bits select the display data format. See Table 8-1: “Panel Data Format” below for a

comprehensive description of panel selection.

Table 8-1: Panel Data Format

@ Data Width | Data Width

sazonlok? | nesishg | ess e | 20 | BHO Function
REG[01h] bit1 | REG[01h] bit 0

0 0 Mono Single 4-bit passive LCD

o 1 Mono Single 8-bit passive LCD

4 0 reserved

1 reserved

0 reserved

’ 0 1 Mono Dual 8-bit passive LCD

0 reserved

1 1 reserved

0 6 0 Color Single 4-bit passive LCD

1 Color Single 8-bit passive LCD format 1

0 0 reserved

1 1 Color Single 8-bit passive LCD format 2

0 reserved

0 1 Color Dual 8-bit passive LCD

! ? 0 reserved

1 reserved

0 9-bit TFT/D-TFD panel
1 X (don’t care) -

1 12-bit TFT/D-TFD panel

Hardware Functional Specification SED1375

Issue Date: 01/01/29 X27A-A-001-07

Page 56 Epson Research and Development
Vancouver Design Center

Address = 1FFE2h

REG[02h] Mode Register 1
Read/Write.

Bit-Per-Pixel
Bit 1

Bit-Per-Pixel High

Bit 0

Hardware
Video Invert

Enable

Input Clock

divide
(CLKI/2)

Frame
Repeat

Software

Display Biank Video Invert Performance

bits 7-6

bit 5

Bit-Per-Pixel Bits [1:0]

These bits select the color or gray-scale depth (Display Mode).

Table 8-2: Gray Scale/Color Mode Selection

Bit-Per-Pixel Bit 1

REG[02h] bit 7

Color/Mono

REG[01h] bit 5

Bit-Per-Pixel Bit 0

REG[02h] bit 6 Display Mode

0 2 Gray scale 1 bit-per-pixel
0

4 Gray scale 2 bit-per-pixel

16 Gray scale | 4 bit-per-pixel

reserved

2 Colors 1 bit-per-pixel

4 Colors

16 Colors

2 bit-per-pixel

4 bit-per-pixel

2
o
l

a
l
o
l
=
|
l
o
l

=
256 Colors 8 bit-per-pixel

High Performance (Landscape Modes Only)

When this bit = 0, the internal Memory Clock (MCLK) is a divided-down version of the

Pixel Clock (PCLK). The denominator is dependent on the bit-per-pixel mode - see the

table below.

Table 8-3: High Performance Selection

High Performance BPP Bit 1 BPP Bit 0 Display Modes

MClk = PCIk/8

MClk = PClk/4

MClk = PClk/2

MClk = PClk 8 bit-per-pixel

MClk = PClk

1 bit-per-pixel 0 per-p

2 bit-per-pixel

5 4 bit-per-pixel

X
|
=
|
O
o
|
—
=
|
O

1 X

When this bit = 1, MCLK is fixed to the same frequency as PCLK for all bit-per-pixel

modes. This provides a faster screen update performance in 1/2/4 bit-per-pixel modes, but

also increases power consumption. This bit can be set to 1 just before a major screen

update, then set back to 0 to save power after the update. This bit has no effect in Swivel-

View mode. Refer to REG[1Bh] SwivelView Mode Register on page 66 for SwivelView

mode clock selection.

SED1375
X27A-A-001-07

Hardware Functional Specification
Issue Date: 01/01/29

Epson Research and Development Page 57

Vancouver Design Center

bit 4 Input Clock Divide

When this bit = 0, the Operating Clock(CLK) is the same as the Input Clock (CLKI).

When this bit = 1, CLK = CLKI/2.

In landscape mode PCLK=CLK and MCLK is selected as per Table 8-3: “High Perfor-

mance Selection”.

In SwivelView mode, MCLK and PCLK are derived from CLK as shown in Table 8-8:

“Selection of PCLK and MCLK in SwivelView Mode,” on page 67.

bit 3 Display Blank

This bit blanks the display image. When this bit = 1, the display is blanked (FPDAT lines

to the panel are driven low). When this bit = 0, the display is enabled.

bit 2 Frame Repeat (EL support)

This feature is used to improve Frame Rate Modulation of EL panels. When this bit = 1,

an internal frame counter runs from 0 to 3FFFFh. When the frame counter rolls over, the

modulated image pattern is repeated (every 1 hour when the frame rate is 72Hz). When

this bit = 0, the modulated image pattern is never repeated.

bit 1 Hardware Video Invert Enable

In passive panel modes (REG[01h] bit 7 = 0) FPDAT11 is available as either GP104 or

hardware video invert. When this bit = 1, Hardware Video Invert is enabled via the

FPDAT11 pin. When this bit = 0, FPDAT11 operates as GPIO4. See Table 8-4: “Inverse

Video Mode Select Options” below.

Note
Video data is inverted after the Look-Up Table.

bit 0 Software Video Invert
When this bit = 1, Inverse Video Mode is selected. When this bit = 0, Standard Video

Mode is selected. See Table 8-4: “Inverse Video Mode Select Options” below.

Note
Video data is inverted after the Look-Up Table.

Table 8-4: Inverse Video Mode Select Options

Software Video Invert
Hardware Video i X FPDAT11 .

(Passive and Active : Video Data
Invert Enable (Passive Panels Only)

Panels)

0 0 X Normal

0 1 X Inverse

1 X 0 Normal

1 X 1 Inverse

Hardware Functional Specification SED1375
Issue Date: 01/01/29 X27A-A-001-07

Page 58 Epson Research and Development
Vancouver Design Center

REG[03h] Mode Register 2
Address = 1FFE3h Read/Write

n/a n/a n/a n/a
LCDPWR
Override

Hardware
Power Save

Enable

Software

Power Save
Bit 1

Software
Power Save

Bit 0

bit 3

bit 2

bits 1-0

LCDPWR Override

This bit is used to override the panel on/off sequencing logic. When this bit =0, LCDPWR

and the panel interface signals are controlled by the sequencing logic. When this bit 1,

LCDPWR is forced to off and the panel interface signals are forced low immediately upon

entering power save mode. See Section 7.3.2, “Power Down/Up Timing” on page 36 for

further information.

Hardware Power Save Enable

When this bit = 1 GPIOO is used as the Hardware Power Save input pin. When this bit =0,

GPIOO operates normally.

Table 8-5: Hardware Power Save/GPIO0 Operation

RESET#

State

Hardware Power

Save Enable

REG[03h] bit 2

GPIO0 Config

REG[18h] bit 0

GPIOO
Status/Control

REG[19h] bit 0
GPIOO0 Operation

0 X X X

1 0 0 reads pin status
GPIOO0 Input

(high impedance)

1
1

0 GPIOO0 Output =0

1 GPIOO0 Output = 1

1 Hardware Power Save

Input (active high)

Software Power Save Bits [1: 0]

These bits select the Power Save Mode as shown in the following table.

Table 8-6: Software Power Save Mode Selection

Bit 1 Bit 0 Mode

0 0 Software Power Save

reserved

reserved

0
1

1

]

0
1 Normal Operation

Refer to Section 13, “Power Save Modes” on page 81 for a complete description of the

power save modes.

SED1375
X27A-A-001-07

Hardware Functional Specification
Issue Date: 01/01/29

Epson Research and Development
Vancouver Design Center

Page 59

REG[04h] Horizontal Panel Size Register

Address = 1FFE4h Read/Write

Horizontal Horizontal Horizontal Horizontal Horizontal Horizontal Horizontal
n/a Panel Size Bit | Panel Size Bit | Panel Size Bit | Panel Size Bit | Panel Size Bit | Panel Size Bit | Panel Size Bit

6 5 4 3 2 1 0

bits 6-0

HorizontalPanelSizeRegister = (

Horizontal Panel Size Bits [6:0]

This register determines the horizontal resolution of the panel. This register must be pro-

grammed with a value calculated as follows:

Note

8

This register must not be set to a value less than 03h.

HorizonlalPanelResolulion(pixels)} -

REG[05h] Vertical Panel Size Register (LSB)
Address = 1FFE5h Read/Write

Vertical Panel | Vertical Panel | Vertical Panel | Vertical Panel | Vertical Panel | Vertical Panel | Vertical Panel | Vertical Panel
Size Size Size Size Size Size Size Size
Bit 7 Bit6 Bit 5 Bit 4 Bit 3 Bit 2 Bit 1 Bit 0

REG[06h] Vertical Panel Size Register (MSB)
Address = 1FFE6h Read/Write

Vertical Panel | Vertical Panel
n/a n/a n/a n/a n/a n/a Size Size

Bit9 Bit 8

REG[05h] bits 7-0

REG[06h] bits 1-0

Vertical Panel Size Bits [9:0]

This 10-bit register determines the vertical resolution of the panel. This register must be

programmed with a value calculated as follows:

VerticalPanelSizeRegister = VerticalPanelResolution(lines) -1

3FFh is the maximum value of this register for a vertical resolution of 1024 lines.

Hardware Functional Specification

Issue Date: 01/01/29

SED1375
X27A-A-001-07

Page 60 Epson Research and Development

Vancouver Design Center

REG[07h] FPLINE Start Position

Address = 1FFE7h Read/Write

i - va FPLINE Start | FPLINE Start | FPLINE Start | FPLINE Start | FPLINE Start
na Position Bit 4 | Position Bit 3 | Position Bit 2 | Position Bit 1 | Position Bit 0

bits 4-0 FPLINE Start Position
These bits are used in TFT/D-TFD mode to specify the position of the FPLINE pulse.

These bits specify the delay, in 8-pixel resolution, from the end of a line of display data

(FPDAT) to the leading edge of FPLINE. This register is effective in TFT/D-TFD mode

only (REG[01h] bit 7 = 1). This register is programmed as follows:

FPLINEposition(pixels) = (REG[07h] +2)x 8

The following constraint must be satisfied:

REG[07h] <REG[08h]

REG[08h] Horizontal Non-Display Period

Address = 1FFE8h Read/Write

Horizontal Horizontal Horizontal Horizontal Horizontal

n/a n/a n/a Non-Display | Non-Display | Non-Display | Non-Display | Non-Display

Period Bit4 | Period Bit3 | Period Bit 2 Period Bit 1 Period Bit 0

bits 4-0 Horizontal Non-Display Period

These bits specify the horizontal non-display period in 8-pixel resolution.

HorizontalNonDisplayPeriod(pixels) = (REG[08h] +4)x 8

REG[09h] FPFRAME Start Position

Address = 1FFESh Read/Write

FPFRAME FPFRAME FPFRAME FPFRAME FPFRAME FPFRAME

n/a n/a Start Position | Start Position | Start Position | Start Position | Start Position | Start Position

Bit 5 Bit 4 Bit3 Bit2 Bit 1 Bit 0

bits 5-0 FPFRAME Start Position

These bits are used in TFT/D-TFD mode to specify the position of the FPFRAME pulse.

These bits specify the number of lines between the last line of display data (FPDAT) and

the leading edge of FPFRAME. This register is effective in TFT/D-TFD mode only

(REG[01h] bit 7 = 1). This register is programmed as follows:

FPFRAMEposition(lines)= REG[09h]

The contents of this register must be greater than zero and less than or equal to the Vertical

Non-Display Period Register, i.e.

1 <REG[09h] <REG[0Ah]

SED1375 Hardware Functional Specification

X27A-A-001-07 Issue Date: 01/01/29

Epson Research and Development
Vancouver Design Cente r

Page 61

REG[0Ah] Vertical Non-Display Period
Address = 1FFEAh Read/Write

Vertical Non- Vertical Non- | Vertical Non- | Vertical Non- | Vertical Non- | Vertical Non- | Vertical Non-
Display n/a Display Display Display Display Display Display
Status Period Bit 5 Period Bit4 | Period Bit 3 Period Bit2 | Period Bit 1 Period Bit 0

bit 7 Vertical Non-Display Status

This bit =1 during the Vertical Non-Display period.

bits 5-0 Vertical Non-Display Period

These bits specify the vertical non-display period. This register is programmed as follows:

VerticalNonDisplayPeriod(lines) = REG[0Ah] bits [5:0]

Note

This register should be set only once, on power-up during initialization.

REG[0Bh] MOD Rate Register
Address = 1FFEBh Read/Write

i - MOD Rate MOD Rate MOD Rate MOD Rate MOD Rate MOD Rate

a Bit5 Bit 4 Bit 3 Bit 2 Bit 1 Bit 0

bits 5-0 MOD Rate Bits [5:0]

When the value of this register is 0, the MOD output signal toggles every FPFRAME. For

a non-zero value, the value in this register + 1 specifies the number of FPLINEs between

toggles of the MOD output signal. These bits are for passive LCD panels only.

Hardware Functional Specification

Issue Date: 01/01/29

SED1375
X27A-A-001-07

Page 62 Epson Research and Development
Vancouver Design Center

REG[0Ch] Screen 1 Start Address Register (LSB)
Address = 1FFECh Read/Write

Screen 1 Start | Screen 1 Start | Screen 1 Start | Screen 1 Start | Screen 1 Start | Screen 1 Start | Screen 1 Start | Screen 1 Start
Address Address Address Address Address Address Address Address

Bit 7 Bit 6 Bit 5 Bit 4 Bit 3 Bit2 Bit 1 Bit 0

REG[0Dh] Screen 1 Start Address Register (MSB)
Address = 1FFEDh Read/Write

Screen 1 Start | Screen 1 Start | Screen 1 Start | Screen 1 Start | Screen 1 Start | Screen 1 Start | Screen 1 Start | Screen 1 Start
Address Address Address Address Address Address Address Address

Bit 15 Bit 14 Bit 13 Bit 12 Bit 11 Bit 10 Bit 9 Bit 8

REGI[0Dh] bits 7-0 Screen 1 Start Address Bits [15:0]

REG[0Ch] bits 7-0 These bits determine the word address of the start of Screen | in Landscape modes or the

byte address of the start of Screen I in SwivelView modes.

Note b‘/kS/&

For SwivelView mode the most significant bit (bit 16) is located in REG[10h].

REG[0Eh] Screen 2 Start Address Register (LSB)
Address = 1FFEEh Read/Write

Screen2 Start | Screen2 Start | Screen2 Start | Screen2 Start | Screen 2 Start | Screen 2 Start | Screen 2 Start | Screen 2 Start
Address Address Address Address Address Address Address Address

Bit 7 Bit 6 Bit5 Bit 4 Bit 3 Bit2 Bit 1 Bit 0

REG[OFh] Screen 2 Start Address Register (MSB)
Address = 1FFEFh Read/Write

Screen 2 Start | Screen2 Start | Screen 2 Start | Screen 2 Start | Screen 2 Start | Screen 2 Start | Screen 2 Start | Screen 2 Start
Address Address Address Address Address Address Address Address

Bit 15 Bit 14 Bit 13 Bit 12 Bit 11 Bit 10 Bit 9 Bit 8

REG[0Fh] bits 7-0 Screen 2 Start Address Bits [15:0]

REG[OEh] bits 7-0 These bits determine the word address of the start of Screen 2 in Landscape modes only

and has no effect in Swivel View modes.

REG[10h] Screen Start Address Overflow Register
Address = 1FFFOh Read/Write

Screen 1 Start

n/a n/a n/a n/a n/a n/a n/a Address
Bit 16

bit 0 Screen 1 Start Address Bit 16

This bit is the most significant bit of Screen 1 Start Address for Swivel View mode. This

bit has no effect in Landscape mode.

SED1375 Hardware Functional Specification

X27A-A-001-07 Issue Date: 01/01/29

Epson Research and Development Page 63

Vancouver Design Center

REG[11h] Memory Address Offset Register
Address = 1FFF1h Read/Write

Memory Memory Memory Memory Memory Memory Memory Memory

Address Address Address Address Address Address Address Address
Offset Bit 7 Offset Bit 6 Offset Bit 5 Offset Bit 4 Offset Bit 3 Offset Bit 2 Offset Bit 1 Offset Bit 0

bits 7-0 Memory Address Offset Bits [7:0] (Landscape Modes Only)

This register is used to create a virtual image by setting a word offset between the last

address of one line and the first address of the following line. If this register is not equal to

zero, then a virtual image is formed. The displayed image is a window into the larger vir-

tual image. See Figure 8-1: “Screen-Register Relationship, Split Screen,” on page 64.

This register has no effect in SwivelView modes. See “REG[1Ch] Line Byte Count Regis

ter for SwivelView Mode” on page 67.

REG[12h] Screen 1 Vertical Size Register (LSB)
Address = 1TFFF2h Read/Write

Screen 1 Screen 1 Screen 1 Screen 1 Screen 1 Screen 1 Screen 1 Screen 1
Vertical Size | Vertical Size | Vertical Size | Vertical Size | Vertical Size | Vertical Size | Vertical Size | Vertical Size

Bit7 Bit 6 Bit 5 Bit 4 Bit 3 Bit 2 Bit 1 Bit 0

REG[13h] Screen 1 Vertical Size Register (MSB)
Address = 1FFF3h Read/Write

Screen 1 Screen 1

n/a n/a n/a n/a n/a n/a Vertical Size | Vertical Size
Bit9 Bit 8

REG([13h] bits 1-0
REG[12h] bits 7-0

Screen 1 Vertical Size Bits [9:0]

This register is used to implement the Split Screen feature of the SED1375. These bits

determine the height (in lines) of Screen 1.

In landscape modes, if this register is programmed with a value, n, where n is less than the

Vertical Panel Size (REG[06h], REG[05h]), then lines O to n of the panel contain Screen 1

and lines n+1 to REG[06h], REG[05h] of the panel contain Screen 2. See Figure 8-1:

“Screen-Register Relationship, Split Screen,” on page 64. If Split Screen is not desired,

this register must be programmed greater than, or equal to the Vertical Panel Size,

REG[06h] and REG[05h].

In SwivelView modes this register must be programmed greater than, or equal to the Verti-

cal Panel Size, REG[06h] and REG[05h]. See “SwivelView™” on page 76.

Hardware Functional Specification SED1375

Issue Date: 01/01/29 X27A-A-001-07

Page 64 Epson Research and Development
Vancouver Design Center

Where:

(REG[0Dh], REG[0Ch]) Words Line O Last Pixel Address=((REG[0Dh], REG[OCh]) +

Line O Last Pixel Address + REG[11h] Words (8(REG[04h]+1) X BPP/16))

o Words
AT Line 0 4 7
¥ Line 1 |

\

\
Image 1 |

| ((REG[06h], REG[05])+1) Lines

\

Line=(REG[13h], REG[12h]) '

R] ‘
Image 2 ‘

(REG[OFh], REG[OEh]) Words
S|

(REG[ODh], REG[OCh]) is the Screen 1 Start Word Address
BPP is Bits-per-Pixel as set by REG[02h] bits 7:6
REG[11h] is the Address Pitch Adjustment in Words
(REG[OFh], REG[OEh)) is the Screen 2 Start Word Address
(REG[13h], REG[12h]) is the Screen 1 Vertical Size
(REG[06h], REG[05h]) is the Vertical Panel Size

8(REG[04h]+1) Pixels REG[11h] Words

Virtual Image

Figure 8-1: Screen-Register Relationship, Split Screen

Consider an example where REG[13h], REG[12] = 0CEh for a 320x240 display system.

The upper 207 lines (CEh + 1) of the panel show an image from the Screen 1 Start Word

Address. The remaining 33 lines show an image from the Screen 2 Start Word Address.

REG[15h] Look-Up Table Address Register

Address = 1FFF5h Read/Write

LUT Address

Bit 7

LUT Address | LUT Address | LUT Address | LUT Address | LUT Address | LUT Address | LUT Address
Bit 6 Bit 5 Bit 4 Bit 3 Bit2 Bit 1 Bit 0

bits 7-0 LUT Address Bits [7:0]

These 8 bits control a pointer into the Look-Up Tables (LUT). The SED1375 has three

256-position, 4-bit wide LUTs, one for each of red, green, and blue — refer to Section 11,

“Look-Up Table Architecture” on page 70 for details.

This register selects which LUT entry is read/write accessible through the LUT Data Reg-

ister (REG[17h]). Writing the LUT Address Register automatically sets the pointer to the

Red LUT. Accesses to the LUT Data Register automatically increment the pointer.

For example, writing a value 03h into the LUT Address Register sets the pointer to R[3]. A

subsequent access to the LUT Data Register accesses R[3] and moves the pointer onto

G[3]. Subsequent accesses to the LUT Data Register move the pointer onto B[3], R[4],

G[4], B[4], R[5], etc.

SED1375
X27A-A-001-07

Hardware Functional Specification
Issue Date: 01/01/29

Epson Research and Development Page 65

Vancouver Design Center

Note

The RGB data is inserted into the LUT after the Blue data is written, i.e. all three colors

must be written before the LUT is updated.

REG[17h] Look-Up Table Data Register
Address = 1FFF7h Read/Write

LUT Data LUT Data LUT Data LUT Data fa y y P
Bit 3 Bit 2 Bit 1 Bit 0 va e na

bits 7-4 LUT Data Bits [3:0]

This register is used to read/write the RGB Look-Up Tables. This register accesses the

entry at the pointer controlled by the Look-Up Table Address Register (REG[15h]).

Accesses to the Look-Up Table Data Register automatically increment the pointer.

Note
The RGB data is inserted into the LUT after the Blue data is written, i.e. all three colors

must be written before the LUT is updated.

REG[18h] GPIO Configuration Control Register
Address = 1FFF8h Read/Write

i o Hi GPIO4 Pin 10 | GPIO3 Pin 10 | GPIO2 Pin IO | GPIO1 PinlO | GPIOO Pin 10
Configuration | Configuration | Configuration | Configuration | Configuration

bits 4-0 GPIO[4:0] Pin 10 Configuration

These bits determine the direction of the GPIO[4:0] pins.

When the GPIOn Pin IO Configuration bit =0, the corresponding GPIOn pin is configured

as an input. The input can be read at the GPIOn Status/Control Register bit. See REG[19h]

GPIO Status/Control Register.

When the GPIOn Pin IO Configuration bit = 1, the corresponding GPIOn pin is configured

as an output. The output can be controlled by writing the GPIOn Status/Control Register

bit.

Note
These bits have no effect when the GPIOn pin is configured for a specific function (i.e.

as FPDAT(11:8] for TFT/D-TFD operation).

When configured as 10, all unused pins must be tied to IO Vpp.

Hardware Functional Specification SED1375

Issue Date: 01/01/29 X27A-A-001-07

Page 66 Epson Research and Development
Vancouver Design Center

REG[19h] GPIO Status/Control Register

Address = 1FFF9h Read/Write

na WA WlE GPIO4 Pin10 | GPIO3 Pin 10 | GPIO2 Pin 1O | GPIO1 Pin IO | GPIOO Pin 10

Status Status Status Status Status

bits 4-0 GPIO[4:0] Status

When the GPIOn pin is configured as an input, the corresponding GPIO Status bit is used

to read the pin input. See REG[18h] above.

When the GPIOn pin is configured as an output, the corresponding GPIO Status bit is used

to control the pin output.

REG[1Ah] Scratch Pad Register

Address = 1FFFAh Read/Write

Scratch bit 7 | Scratch bit 6 | Scratch bit 5 | Scratch bit 4 | Scratch bit 3 | Scratch bit 2 | Scratch bit 1 | Scratch bit 0

bits 7-0 Scratch Pad Register
This register contains general use read/write bits. These bits have no effect on hardware.

REG[1Bh] SwivelView Mode Register

Address = 1FFFBh Read/Write

SwivelView SwivelView

SwivelView SwivelView / i y wed Mode Pixel Mode Pixel
Mode Enable | Mode Select na a na reserve Clock Select | Clock Select

Bit 1 Bit 0

bit 7 SwivelView Mode Enable

When this bit = 1, Swivel View Mode is enabled. When this bit = 0, Landscape Mode is

enabled.

bit 6 SwivelView Mode Select
When this bit = 0, Default SwivelView Mode is selected. When this bit = 1, Alternate

SwivelView Mode is selected. See Section 12, “SwivelView™” on page 76 for further

information on SwivelView Mode.

The following table shows the selection of SwivelView Mode.

Table 8-7: Selection of SwivelView Mode

SwivelView | SwivelView

Mode Enable | Mode Select Mode

(REG[1Bh] bit 7) | (REG[1Bh] bit 6)

0 X Landscape

1 0 Default SwivelView

1 1 Alternate SwivelView

SED1375 Hardware Functional Specification

X27A-A-001-07 Issue Date: 01/01/29

Epson Research and Development Page 67

Vancouver Design Center

bit 2 reserved

reserved bits must be set to 0.

bits 1-0 SwivelView Mode Pixel Clock Select Bits [1:0]

These two bits select the Pixel Clock (PCLK) source in SwivelView Mode - these bits

have no effect in Landscape Mode. The following table shows the selection of PCLK and

MCLK in SwivelView Mode - see Section 12, “Swivel View™” on page 76 for details.

Table 8-8: Selection of PCLK and MCLK in SwivelView Mode

SwivelView SwivelView |Pixel Clock (PCLK) Select

Mode Enable | Mode Select (REG[1Bh] bits [1:0] PCLK = MCLK =

(REG[1Bh] bit7) | (REG[1Bh] bit6) Bit 1 Bit0

0 X X X CLK See Reg[02h] bit 5

1 0 0 0 CLK CLK

1 0 0 1 CLK/2 CLK/2

1 0 1 0 CLK/4 CLK/4

1 0 1 1 CLK/8 CLK/8

1 1 0 0 CLK/2 CLK

1 1 0 1 CLK/2 CLK

1 1 1 0 CLK/4 CLK/2

1 1 1 CLK/8 CLK/4

Where CLK is CLKI (REG[02h] bit 4 = 0) or CLKI/2 (REG[02h] bit 4 = 1)

REG[1Ch] Line Byte Count Register for SwivelView Mode
Address = 1FFFCh Read/Write

Line Byte Line Byte Line Byte Line Byte Line Byte Line Byte Line Byte Line Byte
Count bit 7 Count bit 6 Count bit 5 Count bit 4 Count bit 3 Count bit 2 Count bit 1 Count bit 0

bits 7-0 Line Byte Count Bits [7:0]

This register is the byte count from the beginning of one line to the beginning of the next

consecutive line (commonly called “stride” by programmers). This register may be used to

create a virtual image in Swivel View mode.

When this register = 00 the “stride” = 256 bytes. This value is used for 240x320 8 bpp

default Swivel View mode

When the Line Byte Count Register = n, where 1 < n < FFh, the “stride” = n bytes.

REG[1Eh] and REG[1Fh]

REG[1Eh] and REG[1Fh] are reserved for factory SED1375 testing and should not be

written. Any value written to these registers may result in damage to the SED 1375 and/or

any panel connected to the SED1375.

Hardware Functional Specification SED1375

Issue Date: 01/01/29 X27A-A-001-07

	Palm OS Overview
	Terminology
	Development
	Processor
	Display
	Operating System
	Memory Management
	Databases
	Applications
	Resource Files
	Communication
	Drawing Primitives
	Bitmaps
	Misc Hardware
	Resources

	Hello, world
	Hello.c
	HelloRsc.h
	Callbacks.h

	Palm OS Developer Tech Resources
	Hardware Comparison Matrix
	ROM Image File Downloads
	About ROM Types
	Palm VII ROMs
	Palm OS Software version 3.5
	Palm OS Software version 3.3
	Palm OS Software version 3.2
	Palm OS Software version 3.1
	Palm OS Software version 3.0
	Palm OS Software version 2.0
	Palm OS Software version 1.0

	MC68328: Dragonball Integrated Microprocessor
	MC68328 Features
	MC68328 Parametrics
	MC68328 Documentation
	MC68328 Tools
	MC68328 Design Tools and Data

	MC68EZ328: Dragonball Integrated Microprocessor
	MC68EZ328 Features
	MC68EZ328 Parametrics
	MC68EZ328 Documentation
	MC68EZ328 Tools
	MC68EZ328 Design Tools and Data

	Misc Techniques
	Avoiding Reset after Debugging
	Preventing Sleep
	Sending Mail

	Programmer's Memory Map
	Exception Vectors
	Hacking the Pilot: Bypassing the Palm OS
	That's Right, I Said Grayscale
	Direct Sound Control
	The Biggie: Trap Patching

	Pilot Hack Tutorial
	Crude Pilot 1000 Memory Map
	68328 CPU Registers
	Hacking Pilot Hack
	Hardware Stuff
	Screen Starting Address Register
	Real Time Clock
	Software Stuff
	TRAPs
	Function Names
	Browsing For Strings
	Events
	ROMDump

	PilRC/PilRCUI Manual
	The Pilot Record Database Format
	The PDB File Format Basics
	Major Sections of the PDB File
	The Header
	The Record List
	Assembling the File
	Advice

	Using the Communication Libraries, Part 2: Infrared
	The Standard
	Palm OS IR Capabilities
	IR Library Essentials
	Implementing Infrared Connectivity in a Palm Application
	IrDemo: Building a Palm OS IR Application

	The IrDA Platform
	IrDA System Overview
	Addressing
	Link Access Protocol (IrLAP)
	Hidden Terminal Management
	Device Discovery and Address Conflict Resolution
	Connection Establishment
	IrLAP Data Transfer Services

	Link Management Protocol (IrLMP)
	The Multiplexer
	Information Access Services
	IrLMP Client Example

	Upper Layers
	Application Interfaces

	Application Services

	Infrared Data Communications with IrDA
	The Infrared Data Association (IrDA)
	The Promise of IrDA Connectivity
	High-Level Overview
	Required Layers
	Physical Layer
	Framer/Driver
	IrLAP: Link Access Protocol
	IrLMP: Link Management Protocol
	IAS: Information Access Service
	Tiny TP: Tiny Transport Protocol

	Optional Layers
	IrOBEX: IrDA Object Exchange
	IrCOMM
	IrLPT
	IrTran-P
	IrMC: IrDA Mobile Communications
	RTCON
	JetSend

	IrDA Lite
	List of IrDA Specifications

	The IrDA Standards for High-Speed Infrared Communications
	IrDA Objectives
	Glossary
	The IrDA Architecture
	The IrDA Physical Layer
	2400-to-115,200-bit/s Link
	The 1.152-Mbit/s Link
	The 4-Mbit/s Link
	Coding and Packet Format
	Packet Format
	Error Detection and Delimiters
	Clock Recovery
	The Hewlett-Packard HSDL-1100 IrDA Transceiver

	The IrDA Protocol Layers
	The Infrared Link Access Protocol
	Device Discovery and Address Resolution
	Connection Establishment
	Information Exchange and Link Reset
	Connection Termination
	The Infrared Link Management Protocol
	The Link Management Multiplexer
	Information Access Service
	Tiny TP Flow Control Mechanism

	An Introduction to IrDA Control
	System Overview
	Physical Layer (PHY)
	Media Access Control Layer (MAC)
	Mode-0: Sleep Mode
	Mode-1: Normal Mode
	Mode-2: IrDA-coexistence mode

	Frames
	Protocol Stack
	Logical Link Control (LLC)
	End-User Products

	Discussion: An IrDA Chat Program
	Discussion: XID String Format
	IR Library Header File
	PalmOS Password Retrieval and Decoding
	Details
	Technical Description
	Passwords of 4 Characters or Less
	Passwords Greater Than 4 Characters
	Temporary Solution
	Vendor Response
	Proof-of-Concept Code

	PalmOS/Phage.963 Palm IR Virus
	PalmOS ASCII Chart
	WindowType Fields
	Compress a Bitmap Resource
	LCD Controller Module
	LCDC System Overview
	MPU Interface
	Direct Memory Access (DMA)
	Line Buffer
	Cursor Control Logic
	Frame Rate Control (FRC)
	LCD Interface

	Interfacing LCDC with LCD Panel
	Panel I/F Timing
	Operation Overview
	Display Control
	LCD Screen Format
	Cursor Control Logic
	Display Data Mapping
	Gray Scale Generation
	Gray Palette Mapping
	FRC Offset Control
	Cursor and Blinking Rate Control
	Low-Power Mode

	DMA Controller Overview
	Basic Operation

	Register Descriptions
	System Memory Control Registers
	Screen Starting Address Register (SSA)
	Virtual Page Width Register (VPW)

	Screen Format Registers
	Screen Width Register (XMAX)
	Screen Height Register (YMAX)

	Cursor Control Registers
	Cursor X Position Register (CXP)
	Cursor Y Position Register (CYP)
	Cursor Width & Height Register (CWCH)
	Blink Control Register (BLKC)

	LCD Panel Interface Registers
	Panel Interface Configuration Register (PICF)
	Polarity Configuration Register (POLCF)
	LACD (M) Rate Control Register (ACDRC)

	Line Buffer Control Registers
	Pixel Clock Divider Register (PXCD)
	Clocking Control Register (CKCON)
	Last Buffer Address Register (LBAR)
	Octet Terminal Count Register (OTCR)
	Panning Offset Register (POSR)

	Gray-Scale Control Registers
	Frame-Rate Modulation Control Register (FRCM)
	Gray Palette Mapping Register (GPMR)

	Bandwidth Calculation and Saving
	Bus Overhead Considerations

	16-Bit Color Support
	Determining If 16-Bit Color APIs are Present
	Foreground, Background, and Text Colors
	Pixel Reading and Writing
	Direct Color Bitmaps
	Special Drawing Modes

	LCD Controller
	Operation
	Connecting the LCD Controller to an LCD Panel
	Panel Interface Timing

	Controlling the Display
	Format of the LCD Screen
	Format of the Cursor
	Mapping the Display Data
	Generating the Gray-Scale Tones
	Controlling Frame Rate Modulation

	Using Low-Power Mode
	Using the DMA Controller
	Bus Bandwidth Calculation Example

	Programming Model
	LCD Screen Starting Address Register
	LCD Virtual Page Width Register
	LCD Screen Width Register
	LCD Screen Height Register
	LCD Cursor X Position Register
	LCD Cursor Y Position Register
	LCD Cursor Width and Height Register
	LCD Blink Control Register
	LCD Panel Interface Configuration Register
	LCD Polarity Configuration Register
	LACD Rate Control Register
	LCD Pixel Clock Divider Register
	LCD Clocking Control Register
	LCD Refresh Rate Adjustment Register
	LCD Panning Offset Register
	LCD Frame Rate Control Modulation Register
	LCD Gray Palette Mapping Register
	PWN Contrast Control Register

	Programming Example

	Discussion: Pilot IIIc CPU and LCD Info
	Registers
	Register Mapping
	Register Descriptions
	REG[00h] Revision Code Register
	REG[01h] Mode Register 0
	REG[02h] Mode Register 1
	REG[03h] Mode Register 2
	REG[04h] Horizontal Panel Size Register
	REG[05h] Vertical Panel Size Register (LSB)
	REG[06h] Vertical Panel Size Register (MSB)
	REG[07h] FPLINE Start Position
	REG[08h] Horizontal Non-Display Period
	REG[09h] FPFRAME Start Position
	REG[0Ah] Vertical Non-Display Period
	REG[0Bh] MOD Rate Register
	REG[0Ch] Screen 1 Start Address Register (LSB)
	REG[0Dh] Screen 1 Start Address Register (MSB)
	REG[0Eh] Screen 2 Start Address Register (LSB)
	REG[0Fh] Screen 2 Start Address Register (MSB)
	REG[10h] Screen Start Address Overflow Register
	REG[11h] Memory Address Offset Register
	REG[12h] Screen 1 Vertical Size Register (LSB)
	REG[13h] Screen 1 Vertical Size Register (MSB)
	REG[15h] Look-Up Table Address Register
	REG[17h] Look-Up Table Data Register
	REG[18h] GPIO Configuration Control Register
	REG[19h] GPIO Status/Control Register
	REG[1Ah] Scratch Pad Register
	REG[1Bh] SwivelView Mode Register
	REG[1Ch] Line Byte Count Register for SwivelView Mode
	REG[1Eh] and REG[1Fh]

